نوع مقاله : مقاله کامل علمی پژوهشی
نویسندگان
1 دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب، دانشگاه علوم منابع طبیعی و کشاورزی گرگان، گرگان، ایران.
2 نویسنده مسئول، دانشیار گروه علوم و مهندسی آب، دانشگاه علوم منابع طبیعی و کشاورزی گرگان، گرگان، ایران.
3 مدرس گروه مهندسی عمران و نقشهبرداری، دانشکده فنی و مهندسی، واحد یادگار امام خمینی (ره) شهر ری، دانشگاه آزاد اسلامی، تهران، ایران.
4 دانشیار گروه علوم و مهندسی آب، دانشگاه علوم منابع طبیعی و کشاورزی گرگان، گرگان، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Background and objectives: One of the main factors in the economic and social development of any country is water reserves and potential. Comprehensive and comprehensive knowledge of water resources is a prerequisite for optimal and sustainable use of these resources. In Iran, due to the lack of rainfall in most of the watersheds and the limited water resources, codified planning to know the possibilities and limitations of water resources with the aim of optimal utilization is very necessary and unavoidable. Today one of the basic strategies for managing water resources in the agricultural sector is to choose the appropriate cultivation pattern and determine the strategies for the optimal allocation of agricultural water. the optimal use of limited water resources and obtaining the greatest economic benefit.
Materials and methods:This research was conducted on the cropping pattern of Gonbad-e Kavus region in Golestan province, using the irrigation network of the Golestan Dam for four major autumn crops (wheat, canola, barley, and triticale) in the agricultural years of 2017-2018 to 2020-2021. A multi-objective optimization was performed using the non-dominate sorting genetic algorithm (NSGA-II) with the objectives of maximizing net economic profit and reducing water consumption. Initially, by considering the minimum values of the cropping pattern and using various computational steps, the maximum net economic profit and the amount of stored water were calculated through a bi-objective optimization method. In the next step, the net economic profit obtained from the stored water was optimized using a single-objective optimization method. Finally, the best computational step was selected by combining the values of bi-objective and single-objective net economic profit.
Results: The results showed that the computational steps for each year were not the same, and the maximum net economic profit obtained by observing the minimum allowable cropping pattern and stored water (bi-objective optimization) and the maximum net economic profit obtained by optimizing stored water in the previous step (single-objective optimization) were calculated with different computational steps, considering the calculated annual profit. The results obtained from the maximum net economic profit and stored water based on the minimum allowable cropping pattern, bi-objective optimization (maximum net economic profit and maximum stored water), and the results obtained from single-objective optimization of stored water were accumulated. By considering the accumulated net economic profit from bi-objective and single-objective computational steps, the best net economic profit was achieved. Furthermore, despite the reduction in cultivated area and allocated water in the agricultural years of 2019-2020 and 2020-2021, an increase in net economic profit was observed compared to previous years. In the year 2020-2021, due to the lower allocated water compared to previous years and the optimal cropping pattern being on a negligible area of the target year's cultivated area (83.85 hectares), the highest net economic profit was achieved with a 138% increase in profit. This was due to the increase in product prices compared to costs, resulting in an increase in income greater than the increase in costs.
Conclusion: The results of the present research showed that the use of multi-objective optimization methods has a good performance in order to obtain more economic profit by managing optimal allocated water consumption. Also, taking calculated steps by the officials and organizations of water users to manage the allocated water reserve and achieve the maximum net economic benefit will increase employment, reverse migration and achieve a higher level of social welfare. According to the observance of the minimum strategic cultivation of wheat and the increase of rapeseed and triticale fodder crops, the current model has an optimal and appropriate performance in terms of ensuring food supply chain security and the point of view of non-agent defense.
کلیدواژهها [English]