ترکیب فناوری‌های ماهواره‌ای و پهپادی برای شبیه‌سازی‌های هیدرولیکی با وضوح بالا: مطالعه موردی در حوضه مارون ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار گروه علوم و مهندسی آب، دانشگاه جهرم، جهرم، ایران.

2 دانشجوی دکتری مهندسی عمران و محیط‌زیست، دانشگاه پلی‌تکنیک میلان

3 دانش‌آموخته کارشناسی‌ارشد آبیاری و زهکشی، دانشگاه جهرم، جهرم، ایران.

4 دانشجوی دکتری سنجش‌ازدور، دانشگاه تربیت‌مدرس، تهران، ایران

چکیده

ترکیب فناوری‌های ماهواره‌ای و پهپادی برای شبیه‌سازی‌های هیدرولیکی با وضوح بالا: مطالعه موردی در حوضه مارون ایران
چکیده:
این مطالعه بر ارزیابی و مقایسه اثربخشی مدل‌های ارتفاع رقومی با وضوح بالا که از داده‌های پهپاد و ماهواره‌ای به‌دست آمده‌اند، برای شبیه‌سازی‌های هیدرولیکی تمرکز دارد. این پژوهش که در حوضه مارون در ایران انجام شده است، دقت این مدل‌های رقومی-ارتفاعی را در مدلسازی رویدادهای سیل با استفاده از شبیه‌سازی دوبعدی به وسیله مدل عددی HEC-RAS مورد بررسی قرار می‌دهد. با یکپارچه‌سازی داده‌های بارش و اندازه‌گیری‌های جریان سیلاب، این مطالعه بر پتانسیل داده‌های حاصل از پهپاد برای مدلسازی دقیق هیدرولیکی تأکید دارد، در حالی‌که قابلیت کاربرد داده‌های ماهواره‌ای رایگان را برای استفاده‌های گسترده‌تر نیز مورد بررسی قرار می‌دهد. این مقایسه‌ی دوگانه، دید گاه ‌های ارزشمندی برای مدیریت سیلاب فراهم می‌کند، به‌ویژه در مناطقی که دستیابی دقیق به داده‌ها و واکنش به‌موقع اهمیت زیادی دارد.
سابقه و هدف
سیل‌ها یکی از مهم‌ترین بلایای طبیعی در سراسر جهان هستند که خسارات اقتصادی و انسانی قابل‌توجهی به همراه دارند. تغییرات اقلیمی این مخاطرات را تشدید می‌کند. با شبیه‌سازی رفتار جریان، شناسایی مناطق مستعد سیلاب و کمک به توسعه راهکارهای کاهش اثرات، موجب افزایش کارایی مدیریت سیلاب می‌شود. بدین منظور، مدل‌های رقومی ارتفاعی داده‌های پایه‌ای مربوط به توپوگرافی و ناهمواری زمین را برای این شبیه‌سازی‌ها فراهم می‌کنند.
این مطالعه به بررسی قابلیت‌های مدل‌های رقومی ارتفاعی حاصل از پهپاد که به دلیل دقت مکانی بالا شناخته شده‌اند و مدل‌های رقومی ارتفاعی ماهواره آلوس (ALOS) که پوشش گسترده‌ای در سطح پایین‌تری از دقت دارند، می‌پردازد. پهپادها با فراهم آوردن داده‌های دقیق، به‌ویژه در مناطق محلی و کوچک، تحول مهمی در مدل‌سازی سیلاب ایجاد کرده‌اند. در مقابل، داده‌های آلوس به دلیل دسترس‌پذیری گسترده و هزینه کمتر، برای کاربردهای در مقیاس وسیع مناسب‌تر هستند. با به‌کارگیری هر دو منبع در مدل‌سازی هیدرولیکی دوبعدی، این مطالعه ارزیابی جامعی از نقاط قوت، محدودیت‌ها و امکان یکپارچه‌سازی آن‌ها را ارائه می‌دهد.
مواد و روش‌ها
این تحقیق در منطقه پسکوهک شیراز، ایران، انجام شد که ناحیه ای به مساحت ۴.۳ کیلومتر مربع از حوضه مارون را در بر می‌گیرد. داده‌های بارندگی و جریان رودخانه از طریق ایستگاه‌های محلی جمع‌آوری شد، در حالی که مدل‌های رقومی ارتفاعی از پهپاد و ماهواره آلوس استخراج شدند. برای تصویربرداری با وضوح بالا، از پهپاد استفاده شد و پردازش داده‌ها منجر به تولید مدل‌های رقومی ارتفاعی با دقت مکانی ۵ سانتی‌متر و دقت عمودی ۲ سانتی‌متر شد. داده‌های ماهواره آلوس با دقت مکانی ۱۲.۵ متر به کمک داده‌های پهپاد کالیبره شد تا قابلیت مقایسه و اطمینان‌پذیری افزایش یابد.
برای شبیه‌سازی‌های هیدرولیکی، از نرم‌افزار HEC-RAS 2D استفاده شد. در این مطالعه، بارش به‌عنوان شرط مرزی در نظر گرفته شد که رویکردی نوین در مقایسه با روش‌های متداول مبتنی بر دبی است. کالیبراسیون و اعتبارسنجی مدل بر اساس هیدروگراف‌های مشاهده‌ای انجام گرفت و ضریب زبری مانینگ برای دستیابی به دقت بالاتر بهینه شد. برای حفظ تعادل بین دقت نتایج و کارایی محاسباتی، اندازه شبکه مدل‌سازی با دقت انتخاب شد. برای مدل رقومی ارتفاعی پهپاد، از شبکه ۲×۲ متر و برای مدل آلوس، از شبکه ۵×۵ متر استفاده شد.
یافته ها
مدل‌های رقومی ارتفاعی استخراج‌شده از پهپاد عملکرد بهتری نسبت به مدل‌های آلوس در نمایش ویژگی‌های زمین داشتند. وضوح مکانی بالاتر آنها تصویری دقیق‌تر و واقعی‌تر از پیچ‌وخم کانال، تغییرات شیب و خصوصیات دشت سیلابی ارائه داد. این دقت منجر به شبیه‌سازی‌های هیدرولیکی دقیق‌تر، به‌ویژه در پیش‌بینی دبی اوج و زمان رسیدن به اوج شد. در مورد دبی اوج، مدل رقومی ارتفاعی پهپاد دبی اوج را با اختلاف 0.85 درصد نسبت به داده‌های مشاهده‌شده برآورد کرد، درحالی‌که مدل آلوس آن را 5.2 درصد بیش‌برآورد کرد. پیش‌بینی‌های مدل پهپاد تقریباً منطبق بر داده‌های مشاهده‌شده بود، درحالی‌که مدل آلوس زمان رسیدن به اوج را 8.6 درصد کمتر از مقدار واقعی برآورد کرد. مدل رقومی ارتفاعی پهپاد به‌طور مداوم عمق‌های حداکثری سیلاب کمتری را نسبت به مدل آلوس شبیه‌سازی کرد و با مشاهدات واقعی همخوانی بیشتری داشت. به‌عنوان نمونه، مدل پهپاد به‌طور میانگین عمق‌هایی 14.2 درصد کمتر از مدل آلوس پیش‌بینی کرد. این تفاوت‌ها برتری داده‌های پهپادی را در ثبت جزئیات دقیق‌تر عوارض زمین، که برای تخمین دقیق عمق سیلاب ضروری است، برجسته می‌کند.
گنجاندن بارش به‌عنوان شرط مرزی پویایی و دقت شبیه‌سازی‌ها را افزایش داد. این روش در مقایسه با رویکردهای سنتی مبتنی بر سری‌های زمانی دبی، نشان داد که می‌توان نیاز به مطالعات جداگانه هیدرولوژیکی را برطرف کرد. شبیه‌سازی‌های مبتنی بر بارش، درک جامع‌تری از واکنش حوضه ارائه داد و به بهبود قابلیت‌های پیش‌بینی کمک کرد. هر دو مدل رقومی ارتفاعی پهپاد و آلوس هیدروگراف‌هایی تولید کردند که شباهت زیادی به داده‌های مشاهده‌ای داشتند، با این تفاوت که در شدت و زمان اوج تفاوت‌هایی مشاهده شد. مدل پهپاد، به دلیل وضوح زمانی بالاتر (فواصل 6 دقیقه‌ای)، تغییرات سریع جریان را بهتر از داده‌های ایستگاه‌های هیدرومتری که در بازه‌های ساعتی ثبت شده بودند، شبیه سازی کرد. این قابلیت برای پیش‌بینی آنی سیلاب و واکنش اضطراری بسیار ارزشمند است.
شاخص‌های خطا، دقت برتر داده‌های استخراج‌شده از پهپاد را تأیید کردند؛ به‌طوری که خطای جذر میانگین مربعات برای مدل پهپاد 0.022 و برای مدل آلوس 0.024 به دست آمد و خطای نسبی در دبی اوج برای مدل پهپاد 10.9 درصد و برای مدل آلوس برابر با 14.6 درصد بود. این یافته‌ها بر پتانسیل فناوری پهپاد برای مدل‌سازی هیدرولیکی دقیق تأکید دارند و نشان‌دهنده موازنه‌ای میان داده‌های با وضوح بالا و نیازهای محاسباتی هستند.
این مطالعه بر نقش مکمل داده‌های پهپاد و ماهواره تأکید دارد. به‌طور خلاصه، داده‌های پهپاد برای مطالعات محلی که نیاز به دقت بالا دارند، ایده‌آل است، اما محدودیت‌هایی از جمله موانع عملیاتی، هزینه‌های بالاتر و پوشش محدود دارد. در مقابل، داده‌های ماهواره‌ای برای کاربردهای مقیاس بزرگ مناسب هستند و علیرغم وضوح مکانی کمتر، راه‌حلی مقرون‌به‌صرفه و در دسترس ارائه می‌دهند. این نتایج راهنمایی برای تصمیم‌گیری در انتخاب منابع داده‌ای مناسب برای کاربردهای خاص هیدرولوژیکی فراهم می‌کند.
نتیجه‌گیری
این مطالعه بر کارایی مدل‌های رقومی ارتفاعی استخراج‌شده از پهپاد در بهبود دقت شبیه‌سازی‌های هیدرولیکی، به‌ویژه در مدیریت سیلاب و ارزیابی ریسک تأکید دارد. درحالی‌که پهپادها در دقت برتری دارند، داده‌های ماهواره‌ای آلوس جایگزینی مقرون‌به‌صرفه برای کاربردهای گسترده‌تر ارائه می‌دهند. یافته‌های کلیدی شامل موارد زیر است:
مدل‌های رقومی ارتفاعی پهپاد عملکرد برتری در پیش‌بینی پارامترهای هیدرولیکی ارائه داده و عمق‌های حداکثری کمتر و حاشیه خطای کاهش‌یافته‌ای را در مقایسه با داده‌های آلوس نشان می‌دهند.
مدل‌های آلوس ، علیرغم وضوح پایین‌تر، دقت کافی برای پیش‌بینی دبی اوج دارند و گزینه‌ای مناسب برای پروژه‌های کم هزینه محسوب می‌شوند.
استفاده از بارش به‌عنوان شرط مرزی، پتانسیل ساده‌سازی مدل‌سازی هیدرولیکی را از طریق حذف نیاز به مطالعات جداگانه هیدرولوژیکی نشان می‌دهد.
وضوح زمانی و مکانی بالاتر در شبیه‌سازی‌های پهپاد، امکان نمایش دقیق‌تری از پویایی سیلاب، به‌ویژه در جریان‌های اوج، را فراهم می‌کند.
ادغام داده‌های پهپاد و ماهواره‌ای رویکردی متوازن برای دستیابی به دقت و مقیاس‌پذیری در مدل‌سازی هیدرولیکی ارائه می‌دهد.
این پژوهش مسیر پیشرفت‌های آینده در مدل‌سازی هیدرولیکی را هموار می‌کند و بر ضرورت روش‌های نوین کسب داده و تکنیک‌های محاسباتی پیشرفته تأکید دارد. پیشنهادها شامل به‌کارگیری حسگرهای پهپادی پیشرفته، استفاده از چندین پهپاد برای پوشش وسیع‌تر و بهره‌گیری از الگوریتم‌های یادگیری ماشین برای تسهیل پردازش داده و بهبود دقت پیش‌بینی است.
با پرداختن به محدودیت‌های داده‌های پهپاد و ماهواره، این مطالعه مسیر بهینه‌سازی شبیه‌سازی‌های هیدرولیکی را ترسیم کرده و به مدیریت مؤثرتر ریسک سیلاب و تصمیم‌گیری‌های بهتر کمک می‌کند.
واژه های کلیدی: سیلاب، شبیه سازی عددی، بارندگی، داده های آلوس، پهپاد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bridging Satellite and UAV Technologies for High-Resolution Hydraulic Simulations: A Case Study in Iran’s Marun

نویسندگان [English]

  • Masih Zolghadr 1
  • Abazar Fathi 2
  • Fatemeh Rustapour 3
  • Mohammadreza Kargar 4
1 Corresponding Author, Assistant Prof., Dept. of Water Sciences and Engineering, Jahrom University, Jahrom, Iran.
2 Ph.D. Student of Civil and Environmental Engineering, Politecnico Di Milano.
3 M.Sc. Graduate of Irrigation and Drainage, Jahrom University, Jahrom, Iran
4 Ph.D. Student of Remote Sensing, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Bridging Satellite and UAV Technologies for High-Resolution Hydraulic Simulations: A Case Study in Iran’s Marun Basin
Abstract
This study focuses on evaluating and comparing the effectiveness of high-resolution Digital Elevation Models (DEMs) derived from UAVs and satellite (ALOS) data for hydraulic simulations. Conducted in the Marun Basin in Iran, the research assesses the accuracy of these DEMs in modeling flood events using the HEC-RAS 2D simulation framework. By integrating rainfall data and streamflow measurements, the study underscores the potential of UAV-derived data for precision hydraulic modeling while exploring the utility of freely available satellite data for broader applications. This dual comparison offers valuable insights for flood management, especially in regions where precise data acquisition and timely response are critical.

Background and Objective
Floods are one of the most significant natural disasters globally, causing substantial economic and human losses. Climate change exacerbates these risks. Central to flood simulations are Digital Elevation Models (DEMs), which provide the foundational data on terrain and topography.
The study examines the capabilities of UAV-derived DEMs, known for their high spatial resolution, and ALOS satellite DEMs, which offer extensive coverage at a lower resolution. UAVs have revolutionized flood modeling by enabling precise data acquisition, especially in small, localized areas. In contrast, ALOS data is widely available, cost-effective, and better suited for large-scale applications. By employing both sources for 2D hydraulic modeling, the study provides a comprehensive evaluation of their strengths, limitations, and potential for integration.

Materials and Methods
The research was conducted in the Paskuhak region of Shiraz, Iran, encompassing a 4.3 km² section of the Marun watershed. Rainfall and streamflow data were collected using local gauges, while DEMs were derived from UAVs and ALOS satellite. The drone was used to capture high-resolution imagery. The data was processed to produce DEMs with a spatial resolution of 5 cm and a vertical accuracy of 2 cm. ALOS data, with a spatial resolution of 12.5 meters, was calibrated using UAV data to ensure comparability and reliability.
The HEC-RAS 2D software was employed for hydraulic simulations. Precipitation was used as the boundary condition, a novel approach compared to the traditional discharge-based boundary conditions. Calibration and validation of the model were performed using observed hydrographs, with Manning’s roughness coefficient optimized for accuracy.
Mesh sizes for the simulations were carefully selected to balance computational efficiency and result precision. A 2 m x 2 m mesh was used for the UAV DEM, while a 5 m x 5 m mesh was applied to the ALOS DEM.

Results
The UAV-derived DEMs outperformed ALOS DEMs in accurately representing terrain features. Their higher spatial resolution provided a more detailed and realistic depiction of channel meandering, slope variations, and floodplain characteristics. This precision translated into more accurate hydraulic simulations, particularly in predicting peak discharge and time-to-peak metrics. In terms of peak discharge, the UAV DEM estimated peak discharge within 0.85% of the data observed, while the ALOS DEM overestimated it by 5.2%. The UAV DEM's predictions were nearly identical to the observed data, whereas the ALOS DEM underestimated the time to peak by 8.6%. The UAV DEM consistently simulated lower maximum flood depths compared to the ALOS DEM, aligning more closely with real-world observations. For instance, the UAV DEM predicted depths 14.2% lower than the ALOS DEM on average. These differences highlight the superior ability of UAV data to capture fine-scale terrain details, which are essential for accurate flood depth estimation.
The inclusion of rainfall as a boundary condition enhanced the dynamism and accuracy of simulations. This method contrasts with traditional practices that rely on discharge time series and demonstrated the potential to eliminate the need for separate hydrological studies. The rainfall-driven simulations provided a more comprehensive understanding of watershed response, contributing to improved predictive capabilities. Both UAV and ALOS DEMs produced hydrographs that closely matched observed data, with notable differences in peak intensity and timing. The UAV model, with its higher temporal resolution (6-minute intervals), captured rapid flow changes more effectively than the hourly interval data from hydrometric stations. This capability is particularly valuable for real-time flood forecasting and emergency response. Error metrics validated the superior accuracy of UAV-derived data so that Root Mean Square Error (RMSE) resulted in UAV (0.022) vs. ALOS (0.024) and Relative Error (RE) in Peak Discharge depicted UAV (10.9%) vs. ALOS (14.6%). These findings reaffirm the potential of UAV technology for precision hydraulic modeling and emphasize the trade-offs between high-resolution data and computational requirements. The study highlights the complementary roles of UAV and satellite data. In brief, UAV Data is Ideal for localized studies requiring high precision. Limitations include operational constraints, higher costs, and limited coverage. However, Satellite Data is Suitable for large-scale applications, offering cost-effective and widely available solutions despite lower spatial resolution. These insights guide decision-making in selecting appropriate data sources for specific hydrological applications.

Conclusion
This study underscores the efficacy of UAV-derived DEMs in enhancing hydraulic simulation accuracy, particularly for flood management and risk assessment. While UAVs excel in precision, ALOS satellite data provides a cost-effective alternative for broader applications. Key findings include:
UAV-derived DEMs deliver superior performance in predicting hydraulic parameters, offering lower maximum depths and reduced error margins compared to ALOS data.
ALOS DEMs, despite lower resolution, are sufficiently accurate for peak discharge predictions, making them viable for cost-sensitive projects.
The implementation of rainfall as a boundary condition demonstrates the potential to simplify hydraulic modeling by eliminating the need for separate hydrological studies.
Higher temporal and spatial resolution in UAV simulations enables more accurate representation of flood dynamics, particularly at peak flows.
Integrating UAV and satellite data offers a balanced approach to achieving accuracy and scalability in hydraulic modeling.
The research paves the way for future advancements in hydraulic modeling, emphasizing the need for innovative data acquisition methods and enhanced computational techniques. Recommendations include deploying advanced UAV sensors, utilizing multiple UAVs for larger coverage, and leveraging machine learning algorithms to streamline data processing and improve predictive accuracy.
By addressing the limitations of both UAV and satellite data, the study provides a roadmap for optimizing hydraulic simulations, contributing to more effective flood risk management and decision-making.
Keywords: Flooding; Numerical Simulation; Precipitation; ALOS data; Drone

کلیدواژه‌ها [English]

  • Flooding
  • Numerical Simulation
  • Precipitation
  • ALOS data
  • Drone
1.Soriano, E., Mediero, L., & Garijo, C. (2020). Quantification of Expected Changes in Peak Flow Quantiles in Climate Change by Combining Continuous Hydrological Modelling with the Modified Curve Number Method. Water Resources Management, 34 (14), 4381-4397. https://doi.org/10. 1007/s11269-020-02670-w.
2.Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., … Živković, N. (2019). Changing climate both increases and decreases European river floods. Nature, 573 (7772), 108–111. https://doi.org/10. 1038/s41586-019-1495-6.
3.Salarijazi, M. (2012). Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research 7(32). https://doi. org/10.5897/AJAR12.650.
4.Bahrami, E., Salarijazi, M., & Nejatian, S. (2022). Estimation of flood hydrographs in the ungauged mountainous watershed with Gray synthetic unit hydrograph model. Arabian Journal of Geosciences, 15 (8), 761. https://doi.org/10. 1007/ s12517-022-10029-1.
5.Pedrozo‐Acuña, A., Rodríguez‐Rincón, J. P., Arganis‐Juárez, M., Domínguez‐Mora, R., & González Villareal, F. J. (2015). Estimation of probabilistic flood inundation maps for an extreme event:
P ánuco River, M éxico. Journal of
Flood Risk Management
, 8(2), 177–192. https://doi.org/10.1111/jfr3.12067.
6.Li, B., Hou, J., Li, D., Yang, D., Han, H., Bi, X., Wang, X., Hinkelmann, R., & Xia, J. (2021). Application of LiDAR UAV for High-Resolution Flood Modelling. Water Resources Management, 35(5), 1433-1447. https://doi.org/10. 1007/s11269-021-02783-w.
7.Trepekli, K., Balstrøm, T., Friborg, T., Fog, B., Allotey, A. N., Kofie, R. Y., & Møller-Jensen, L. (2022). UAV-borne, LiDAR-based elevation modelling: A method for improving local-scale urban flood risk assessment. Natural Hazards, 113(1), 423-451. https://doi.org/10.1007/ s11069-022-05308-9.
8.Annis, A., Nardi, F., Petroselli, A., Apollonio, C., Arcangeletti, E., Tauro, F., Belli, C., Bianconi, R., & Grimaldi, S. (2020). UAV-DEMs for Small-Scale Flood Hazard Mapping. Water, 12(6), 1717. https://doi.org/10.3390/w12061717.
9.Escobar Villanueva, J. R., Iglesias Martínez, L., & Pérez Montiel, J. I. (2019). DEM Generation from Fixed-Wing UAV Imaging and LiDAR-Derived Ground Control Points for Flood Estimations. Sensors, 19(14), 3205. https://doi.org/10.3390/s19143205.
10.Mollaee, Z., Zahiri, J., Jalili, S., Ansari, M. R., & Taghizadeh, A. (n.d.-b). Estimating suspended sediment concentration using remote sensing and artificial neural network (case study: Karun river). Jwss, 22(2), 249–259.
11.Zolghadr, M., Rafiee, M. R., Esmaeilmanesh, F., Fathi, A., Tripathi, R. P., Rathnayake, U., Gunakala, S. R., & Azamathulla, H. M. (2022). Computation of Time of Concentration Based on Two-Dimensional Hydraulic Simulation. Water, 14(19), 3155. https://doi.org/10.3390/w14193155.
12.Sardemann, H., Eltner, A., & Maas, H.-G. (2018). Acquisition of geometrical data of small rivers with an unmanned water vehicle. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–2, 1023-1027. https://doi.org/10. 5194/isprs-archives-XLII-2-1023-2018.
13.Fathi, A., & Zolghadr, M. (2024). A Novel Method for Estimating Time of Concentration in Ungauged Catchments. Water Resources Management, 38(11), 4003-4018. https://doi.org/10. 1007/s11269-024-03849-1.
14.Pandya, D., Rana, V. K., & Suryanarayana, T. M. V. (2024). Inter-comparison and assessment of digital elevation models for hydrological applications in the Upper Mahi River Basin. Applied Geomatics, 16(1), 191-214. https://doi.org/10. 1007/s12518-023-00547-2.
15.Xu, K., Fang, J., Fang, Y., Sun, Q., Wu, C., & Liu, M. (2021). The Importance of Digital Elevation Model Selection in Flood Simulation and a Proposed Method to Reduce DEM Errors: A Case Study in Shanghai. International Journal of Disaster Risk Science, 12(6), 890-902. https://doi.org/10.1007/s13753-021-00 377-z.
16.Azizian, A., & Brocca, L. (2020). Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. International Journal of Remote Sensing, 41(5), 1884-1906. https://doi.org/10.1080/01431161.2019.1677968.
17.Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10. 1016/ j.jhydrol.2021.126088.
18.Costabile, P., Costanzo, C., Ferraro, D., & Barca, P. (2021). Is HEC-RAS 2D accurate enough for storm-event hazard assessment? Lessons learnt from a benchmarking study based on rain-on-grid modelling. Journal of Hydrology, 603, 126962. https://doi.org/10.1016/ j.jhydrol.2021.126962.
19.Khattak, M. S., Anwar, F., Saeed, T., Sharif, M., Sheraz, K., & Ahmed, A. (2015). Floodplain Mapping Using HEC-RAS and ArcGIS: A Case Study of Kabul River. The Arabian Journal for Science and Engineering, 41, 1375-1390.
20.AL-Hussein, A. A. M., Khan, S., Ncibi, K., Hamdi, N., & Hamed, Y. (2022). Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East-Northern Iraq). Water, 14 (22), 3779. https://doi.org/ 10.3390/w14223779.
21.Iqbal, A., Mondal, M. S., Veerbeek, W., Khan, M. S. A., & Hakvoort, H. (2023). Effectiveness of UAV ‐based DTM and satellite‐based DEMs for local‐level flood modeling in Jamuna floodplain. Journal of Flood Risk Management,
16 (4), e12937. https://doi.org/10. 1111/jfr3.12937.
22.Zahiri, J., Ashnavar, M. (2019). Two-Dimensional Hydraulic Modeling of Karun River. Journal of Water and Soil Science, 23(4). https://doi.org/10. 47176/jwss.23.4.36151.
23.Liu, Z., Merwade, V., & Jafarzadegan, K. (2019). Investigating the role of model structure and surface roughness in generating flood inundation extents using one‐and two‐dimensional hydraulic models. Journal of Flood Risk Management, 12(1), e12347. https://doi. org/10.1111/jfr3.12347.
24.Karamuz, E., Romanowicz, R. J., & Doroszkiewicz, J. (2020). The use of unmanned aerial vehicles in flood hazard assessment. Journal of Flood Risk Management, 13(4), e12622. https://doi.org/10.1111/jfr3.12622.
25.Ozcan, O., & Akay, S. S. (2018). Modeling Morphodynamic Processes in Meandering Rivers with UAV-Based Measurements. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 7886-7889. https://doi.org/10.1109/IGARSS.2018.8518221.
26.Dekker, R. J., Schuurmans, J. M., Berendrecht, W. L., Borren, W., Ven, T. J. M. van de, & Westerhoff, R. S. (2010). Improving hydrological models of the Netherlands using ALOS PALSAR. ESA Conference on Earth Observation and Water Cycle Science.
27.Langhammer, J., Bernsteinová, J., & Miřijovský, J. (2017). Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring. Water, 9 (11), 861. https://doi.org/10.3390/ w9110861.
28.Massuel, S., Feurer, D., El Maaoui, M. A., & Calvez, R. (2022). Deriving bathymetries from unmanned aerial vehicles: A case study of a small intermittent reservoir. Hydrological Sciences Journal, 67 (1), 82-93. https://doi.org/10.1080/02626667.2021.1988614.
29.Yalcin, E. (2018). Generation of high-resolution digital surface models for urban flood modelling using uav imagery. 357-366. https://doi.org/10. 2495/EID180321.
30.Tang, Q., Schilling, O. S., Kurtz, W., Brunner, P., Vereecken, H., & Hendricks Franssen, H. (2018). Simulating Flood‐Induced Riverbed Transience Using Unmanned Aerial Vehicles, Physically Based Hydrological Modeling, and the Ensemble Kalman Filter. Water Resources Research, 54 (11), 9342-9363. https://doi.org/10. 1029/2018WR023067.
31.Xafoulis, N., Kontos, Y., Farsirotou, E., Kotsopoulos, S., Perifanos, K., Alamanis, N., Dedousis, D., & Katsifarakis, K. (2023). Evaluation of Various Resolution DEMs in Flood Risk Assessment and Practical Rules for Flood Mapping in Data-Scarce Geospatial Areas: A Case Study in Thessaly, Greece. Hydrology, 10 (4), 91. https://doi.org/10.3390/ hydrology10040091.
32.Zhu, H., & Chen, Y. (2024). A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling. Remote Sensing, 16(16), 3105. https://doi.org/10.3390/ rs16163105.
33.McClean, F., Dawson, R., & Kilsby, C. (2020). Implications of Using Global Digital Elevation Models for Flood Risk Analysis in Cities. Water Resources Research, 56(10), e2020WR028241. https://doi.org/10.1029/2020WR028241.
34.Parizi, E., Khojeh, SH., Hosseini, S. M., & Jouybari Moghadam, Y. (2022). Application of unmanned aerial vehicle DEM in flood modeling and comparison with global DEMs: Case study of
Atrak River Basin, Iran. Journal of Environmental Management, 317. https://doi.org/10.1016/j.jenvman.2022.114650.
35.Mazzoleni, M., Paron, P., Reali, A., Juizo, D., Manane, J., & Brandimarte, L. (2020). Testing UAV-derived topography for hydraulic modelling in a tropical environment. Natural Hazards, 103(1), 139-163. https://doi.org/10. 1007/s11069-020-03963-4.
36.Leitão, J. P., Moy de Vitry, M., Scheidegger, A., & Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20 (4), 1637-1653. https://doi.org/10. 5194/hess-20-1637-2016.
37.Jaramillo, G. V., & Bustán, G. A. (2024). Assessment of spatial data obtained by means of the use of unmanned aerial vehicle (UAV). Proceedings of International Structural Engineering and Construction. https://api.semanticscholar.org/Corpus ID:268671095.
38.Rudd, J. D., Roberson, G. T., & Classen, J. J. (2017). Application of satellite, unmanned aircraft system, and ground-based sensor data for precision agriculture: A review. 2017 Spokane, Washington July 16 - July 19, 2017. 2017 Spokane, Washington July 16 - July 19, 2017. https://doi.org/10. 13031/aim.201700272.
39.Adão, T., Hruska, J., Pádua, L., Bessa, J. E., Peres, E., Morais, R., & Sousa, J. J. (n.d.-a). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing.
40.Liao, X., Zhang, Y., Su, F., Yue, H., Ding, Z., & Liu, J. (2018). UAVs surpassing satellites and aircraft in remote sensing over China. International Journal of Remote Sensing, 39(21), 7138-7153. https://doi.org/10. 1080/01431161.2018.1515511.
41.Hashemi-Beni, L., Jones, J., Thompson, G., Johnson, C., & Gebrehiwot, A. (2018). Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina. Sensors, 18(11), 3843. https://doi.org/ 10.3390/s18113843.
42.Peggy Zinke & Claude Flener. (n.d.). Experiences from the use of Unmanned Aerial Vehicles (UAV) for River Bathymetry Modeling in Norway. Water, 48(3), 351-360.
43.Notti, D., Giordan, D., Caló, F., Pepe, A., Zucca, F., & Galve, J. P. (2018). Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sensing, 10(11), 1673. https:// doi.org/10.3390/rs10111673.