L

Print ISSN: 2322-2069

Journal of Water and Soil Conservation
Online ISSN: 2322-2794

(OPEN ACCESS)

Bridging Satellite and UAV Technologies for High-Resolution
Hydraulic Simulations: A Case Study in Iran’s Marun Basin

Masih Zolghadr*1 , Abazar Fathi’ , Fatemeh Rustapour3 X

Mohammadreza Kargar4

1. Corresponding Author, Assistant Prof., Dept. of Water Sciences and Engineering, Jahrom University, Jahrom, Iran.
E-mail: zolghadr.masih@jahromu.ac.ir

2. Ph.D. Student of Civil and Environmental Engineering, Politecnico Di Milano. E-mail: abazar.fathi@polimi.it

3. M.Sc. Graduate of Irrigation and Drainage, Jahrom University, Jahrom, Iran. E-mail: fatemehroostapour@gmail.com

4. Ph.D. Student of Remote Sensing, Tarbiat Modares University, Tehran, Iran. E-mail: mohammadreza kargar@modares.ac.ir

Article Info

ABSTRACT

Article type:
Research Full Paper

Article history:

Received: 12.30.2024
Revised: 02.22.2025
Accepted: 03.15.2025

Keywords:

ALOS data,

Drone,

Flooding,

Numerical Simulation,
Precipitation

This study focuses on evaluating and comparing the effectiveness of
high-resolution Digital Elevation Models (DEMs) derived from UAVs and
satellite (ALOS) data for hydraulic simulations. Conducted in the Marun
Basin in Iran, the research assesses the accuracy of these DEMs in
modeling flood events using the HEC-RAS 2D simulation framework. By
integrating rainfall data and streamflow measurements, the study
underscores the potential of UAV-derived data for precision hydraulic
modeling while exploring the utility of freely available satellite data for
broader applications. This dual comparison offers valuable insights for
flood management, especially in regions where precise data acquisition and
timely response are critical.

Background and Objectives: Floods are one of the most significant
natural disasters globally, causing substantial economic and human losses.
Climate change exacerbates these risks. Central to flood simulations are
Digital Elevation Models (DEMs), which provide the foundational data
on terrain and topography. The study examines the capabilities of
UAV-derived DEMs, known for their high spatial resolution, and ALOS
satellite DEMSs, which offer extensive coverage at a lower resolution.
UAVs have revolutionized flood modeling by enabling precise data
acquisition, especially in small, localized areas. In contrast, ALOS data is
widely available, cost-effective, and better suited for large-scale applications.
By employing both sources for 2D hydraulic modeling, the study provides
a comprehensive evaluation of their strengths, limitations, and potential for
integration.

Materials and Methods: The research was conducted in the Paskuhak
region of Shiraz, Iran, encompassing a 4.3 km? section of the Marun
watershed. Rainfall and streamflow data were collected using local gauges,
while DEMs were derived from UAVs and ALOS satellite. The drone was
used to capture high-resolution imagery. The data was processed to
produce DEMs with a spatial resolution of 5 cm and a vertical accuracy of
2 cm. ALOS data, with a spatial resolution of 12.5 meters, was calibrated
using UAV data to ensure comparability and reliability. The HEC-RAS 2D
software was employed for hydraulic simulations. Precipitation was used
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as the boundary condition, a novel approach compared to the traditional
discharge-based boundary conditions. Calibration and validation of the
model were performed using observed hydrographs, with Manning’s
roughness coefficient optimized for accuracy. Mesh sizes for the
simulations were carefully selected to balance computational efficiency
and result precision. A 2 m X 2 m mesh was used for the UAV DEM, while
a 5 m x 5 m mesh was applied to the ALOS DEM.

Results: The UAV-derived DEMs outperformed ALOS DEMs in accurately
representing terrain features. Their higher spatial resolution provided a
more detailed and realistic depiction of channel meandering, slope
variations, and floodplain characteristics. This precision translated into
more accurate hydraulic simulations, particularly in predicting peak
discharge and time-to-peak metrics. In terms of peak discharge, the UAV
DEM estimated peak discharge within 0.85% of the data observed, while
the ALOS DEM overestimated it by 5.2%. The UAV DEM's predictions
were nearly identical to the observed data, whereas the ALOS DEM
underestimated the time to peak by 8.6%. The UAV DEM consistently
simulated lower maximum flood depths compared to the ALOS DEM,
aligning more closely with real-world observations. For instance, the UAV
DEM predicted depths 14.2% lower than the ALOS DEM on average.
These differences highlight the superior ability of UAV data to capture
fine-scale terrain details, which are essential for accurate flood depth
estimation. The inclusion of rainfall as a boundary condition enhanced the
dynamism and accuracy of simulations. This method contrasts with
traditional practices that rely on discharge time series and demonstrated the
potential to eliminate the need for separate hydrological studies. The
rainfall-driven simulations provided a more comprehensive understanding
of watershed response, contributing to improved predictive capabilities.
Both UAV and ALOS DEMs produced hydrographs that closely matched
observed data, with notable differences in peak intensity and timing. The
UAV model, with its higher temporal resolution (6-minute intervals),
captured rapid flow changes more effectively than the hourly interval data
from hydrometric stations. This capability is particularly valuable for real-
time flood forecasting and emergency response. Error metrics validated the
superior accuracy of UAV-derived data so that Root Mean Square Error
(RMSE) resulted in UAV (0.022) vs. ALOS (0.024) and Relative Error
(RE) in Peak Discharge depicted UAV (10.9%) vs. ALOS (14.6%). These
findings reaffirm the potential of UAV technology for precision hydraulic
modeling and emphasize the trade-offs between high-resolution data and
computational requirements. The study highlights the complementary roles
of UAV and satellite data. In brief, UAV Data is Ideal for localized studies
requiring high precision. Limitations include operational constraints, higher
costs, and limited coverage. However, Satellite Data is Suitable for large-
scale applications, offering cost-effective and widely available solutions
despite lower spatial resolution. These insights guide decision-making in
selecting appropriate data sources for specific hydrological applications.

Conclusion: This study underscores the efficacy of UAV-derived DEMs in
enhancing hydraulic simulation accuracy, particularly for flood management
and risk assessment. While UAVs excel in precision, ALOS satellite data
provides a cost-effective alternative for broader applications. Key findings
include: UAV-derived DEMs deliver superior performance in predicting
hydraulic parameters, offering lower maximum depths and reduced error
margins compared to ALOS data. ALOS DEMs, despite lower resolution,
are sufficiently accurate for peak discharge predictions, making them
viable for cost-sensitive projects. The implementation of rainfall as a
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boundary condition demonstrates the potential to simplify hydraulic
modeling by eliminating the need for separate hydrological studies. Higher
temporal and spatial resolution in UAV simulations enables more accurate
representation of flood dynamics, particularly at peak flows. Integrating
UAYV and satellite data offers a balanced approach to achieving accuracy
and scalability in hydraulic modeling. The research paves the way for
future advancements in hydraulic modeling, emphasizing the need
for innovative data acquisition methods and enhanced computational
techniques. Recommendations include deploying advanced UAV sensors,
utilizing multiple UAVs for larger coverage, and leveraging machine
learning algorithms to streamline data processing and improve predictive
accuracy. By addressing the limitations of both UAV and satellite data,
the study provides a roadmap for optimizing hydraulic simulations,
contributing to more effective flood risk management and decision-making.
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Introduction

Global warming contributes to bringing
more water to the atmosphere, thus
intensifying the precipitation and bringing
up the link between floods and the
atmospheric  processes (1). Empirical
studies have shown that climate change is
responsible for moving floods both
temporally and spatially and increasing
their intensity. In Europe, floods are
responsible for 40% of all economic losses
and human casualties related to natural
hazards (2). Despite significant human-
induced changes, streamflow series are
more influenced by variations in watershed
rainfall, as observed in the Karun River
basin, where recent increases in precipitation
have led to higher averages in streamflow
sub-series (3). Therefore, flooding is one of
the phenomena that can cause significant
loss of life and property. One of the initial
actions in flood management projects is the
hydraulic analysis of flow in flood-prone
rivers using models. Flood modeling in
ungauged watersheds remains a significant
challenge, necessitating the development of
robust methods for promising results in
estimating flood hydrographs with limited
data (4).

To implement hydraulic models, spatial
ground data or bathymetry is required.
Various sources such as satellite data and
Unmanned Aerial Vehicle (UAV drone)
data are available to obtain these data.
Therefore, the correct selection between the
available sources is of particular importance
and necessity, and it can affect flood
management decision-making as well as the
accuracy of simulation results. Accurate
spatial data can significantly enhance the
precision of hydraulic simulations, leading
to better predictions of flood behavior and
improved preparedness and response
strategies. By carefully choosing between
satellite and UAV data, researchers and
practitioners can optimize the effectiveness
of their flood management efforts, ensuring
that both immediate and long-term
measures are based on the most reliable
information available. The importance of
selecting the appropriate data source cannot
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be overstated, as it directly influences the
quality and reliability of the hydraulic
models used in flood risk assessment and
mitigation. In this study, DEM data from
UAV and open-access satellite data were
used as input to 2D hydraulic simulations
for flood inundation.

The use of drones in flood mapping
(UAVs) has become a widely adopted
technique due to their potential to deliver
high-resolution, real-time information that
is crucial for the implementation of
effective flood management and mitigation
strategies that are effective. Open-access
Digital Elevation Model (DEM) products
are another widely used method for
obtaining surface feature information (5).
What follows is a summary of the studies
that have been carried out on the two
methods of flood modeling discussed
herein.

(6) utilized LiDAR technology mounted
on UAVs for flood modeling at a high
resolution in a small mountain basin and a
large urban region as well. They verified
the flood modeling methods by traditional
means and showed that UAV-LiDAR-
derived data contains detailed elements
such as small channels and streams that are
crucial for flood behavior. Therefore, this
technology, in essence, greatly enhances the
resolution and accuracy of flood model
simulations to a great extent. (7) posed
UAV-borne LIDAR as a solution to their
problem by using it to create very high-
resolution digital elevation models for three
different locations in Accra, Ghana. The
study examined how much introducing such
detailed topographic data into flood
modeling would alter the results and the
conclusion is that the Digital Terrain
Models (DTM) with 0.3 m resolution from
UAVs, provided more accurate results than
the ones that used non-ground references,
which were 10 m DTM. As a result,
overestimating water flows in flat regions
was reduced by as much as 62.5% when
compared to the course DTM.

(8) carried out a study on the ability of
UAVs to produce Digital Elevation Models
(DEMs) to improve flood hazard mapping
in small basins. They used different DEMs
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as input to a 2D hydraulic model (FLO-2D)
and compared the performance of
UAV-derived DEMs with freely accessible
and traditional DEMs. The authors stated
that UAVs produced DEMs that were
more accurate than the conventional
method in flood simulation forecasting.
They particularly highlighted its reliability
in predicting flood extents and depth. (9)
used DEMs created from UAV (Unmanned
Aerial Vehicle) imaging with LiDAR-aided
ground control points (LCPs) for flood
applications. They used both UAV-derived
DEMs and a LiDAR-based reference to
compare flood estimation results. The
authors demonstrated that georeferencing
with LCPs resulted in DEM files with
acceptable vertical uncertainty levels, and
UAV-derived DEMs were found to be
a complementary tool to LiDAR for local-
level flood studies. The other approach to
grasp the underlying surface is open-access
satellite (10), data and ALOS satellite data
have been widely recognized and utilized in
hydraulic and hydrologic simulations across
various studies. For example, (11) and (12)
have indeed been looking into advanced
technologies with the integration of ALOS
data to get a more accurate flood modeling
result. Similarly, (13) are also involved in
the process of improving these methods,
showing they have been consistently getting
better results in the use of ALOS data for
hydrology applications.

(14) assessed different DEM files
obtained from various sources such as
Copernicus Global Land Operations (GLO),
Advanced Land Observation Satellite
(ALOS), Cartosat, Shuttle Radar Topography
Mission (SRTM), and Advanced Spaceborne
Thermal Emission and Reflection Radiometer
(ASTER) for hydrology purposes including
watershed delimitation, hydraulic simulation,
and statistical analysis in the Mahi River
basin in India. The research found that
ALOS and GLO are the most trustworthy
methods for obtaining high-resolution
topography data needed for detailed
analysis and modeling. (15) utilized open-
access DEMs namely SRTM, MERIT,
Coastal DEM, GDEM, NASADEM, and
AW3D30 for flood inundation mapping in a
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small flat river basin in China. They
discovered that if a single DEM's output is
sourced from different providers, it can
cause a skew of the flood mapping results.
The research highlights the necessity of
providing correct and high-resolution DEMs,
which will guarantee the minimization of the
uncertainties in flood mapping. (16)
employed ALOS, SRTM, and ASTER
DEMs to test how reliable DEM outputs are
for hydraulic modeling and flood mapping.
They acknowledged that the findings
aligned with ALOS-30 m model and
ground-based DEM, with MAPE, reported
the complicated land surface of river basin
between 2.76 m and 5.58 m. Their research
emphasizes the importance of high-quality
DEM in flood risk evaluation and shows the
capability of ALOS DEMs to improve
flood modeling in areas lacking data. (17)
studied DEM resolutions from 1 to 50
meters for flood modeling. They used HEC
RAS 2D simulations, across all scenarios.
The researchers noted that the selection of
DEM resolution affects how river channels
and their hydraulic characteristics are
depicted, influencing flood simulations.
Moreover, finer DEM resolutions offer
representation of elements and terrain but
could lead to higher computational
expenses and data needs.

(18) evaluated how well HEC RAS 2D
performs in assessing storm related hazards
using the rain, on grid (RoG) modeling
method as a standard in areas without
gauges. They compared the results of HEC
RAS 2D with those from a well-known
model. The researchers concluded that with
parameter tuning, validation and the rain on
grid technique, HEC RAS 2D is effective
for evaluating storm related hazards in
regions. In a study, by (19) they utilized the
log Pearson type III distribution to estimate
floods for varying return periods. This
information was then entered into HEC
RAS to analyze flood levels, which were
further integrated with ArcGIS to generate
floodplain maps. The researchers endorsed
the application of HEC RAS, for simulating
water levels wunder flood recurrence
intervals. (20) examined flood risk in
the Khazir River in Iraq by combining
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HEC-RAS  with the HEC-GeoRAS
extension in ArcGIS. The authors assessed
numerous rainstorm events with varying
flows and flood return times. They stated
that employing HEC-RAS demonstrated
robust correlations for varying flood depths
and speeds, proving the model's suitability
for assessing flood risks. (21) examined the
efficacy of multiple satellite-based
digital elevation models (DEMs) and a
UAV-based digital terrain model (DTM)
for flood modeling in a two-dimensional
(2D) hydraulic model. In comparison
to satellite-based DEMs, the results
demonstrated that the 2D flood model
utilizing the UAV-based DTM offered
superior estimations of flood characteristics
like arrival time, depth, duration, and
extent. It was discovered that the UAV
technique was highly helpful for producing
precise topography data in flood modeling
when combined with field measurements
and ground control points.

Hydraulic models play an essential role
in determining flood-prone areas, and both
one-dimensional (1D) and two-dimensional
(2D) hydraulic models can be employed for
accurate flood predictions. Most used
models assume the flow to be one-
dimensional and simulate the hydraulic
parameters of the flow based on the one-
dimensional Saint-Venant equations. The
assumption of one-dimensional flow is
justifiable in most river reaches, but in
certain sections of the river, the flow
mechanism follows two-dimensional (22).
In a comparative study, (23) evaluated the
performance of four 1D and 2D hydraulic
models-HEC-RAS 1D, HEC-RAS 2D,
LISFLOOD-FP Diffusive, and LISFLOOD-
FP Sub-grid—concerning their sensitivity
to surface roughness characteristics. The
comparison was conducted across four
different rivers using identical input data
and boundary conditions. The study found
that the performance of the 1D model was
comparable to that of the 2D models. The
performance of the 2D models improved
with increasing channel roughness, while
the 1D model's performance was positively
affected by increasing floodplain roughness.
When the models were evaluated based on

Wy

their ability to describe uniform roughness
versus distributed roughness in the
floodplain, uniform surface characteristics
provided better results compared to
distributed roughness characteristics.

Software tools like HEC-RAS provide
predictions of water levels along rivers and
can be used to simulate flood extents. (24)
applied the HEC-RAS software for flood
modeling and utilized UAV data to update
boundary conditions of hydraulic models.
The authors employed boundary conditions
derived from UAV-produced DTM/DSM
observations, with initial conditions and
additional data obtained through calibration.
To periodically update the model (weekly,
monthly, annually), new boundary condition
data were incorporated. The focus of the
study was on the accuracy of new
observations and methods to improve data
processing. The findings demonstrated that
data updates aimed at providing more
precise information can lead to enhanced
predictions of flood-prone areas, ultimately
improving the reliability of flood warning
systems.

(25) and (26) provide historical
perspectives on the evolution and early
successes of ALOS data in such
simulations, showcasing its enduring
relevance. Conversely, recent research has
increasingly focused on UAV-derived
bathymetric data for simulating flood
hydraulics. Studies by (27), (28), (29), and
(30) explore innovative methodologies and
applications of UAV  technology,
highlighting its growing role in enhancing
spatial resolution and data timeliness
compared to traditional methods. These
comparative advancements underscore the
complementary benefits of integrating
ALOS satellite and UAV-derived data to
bolster the accuracy and reliability of
hydraulic simulations in diverse
environmental contexts.

In this study, ALOS and UAV data were
used as input to HEC-RAS 2D simulation
for flood mapping. The literature survey
indicated that researchers usually have
applied one of these techniques (UAV or
ALOS) to obtain DEM files as input to
hydraulic model, and even if they utilized
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both approaches, 1D HEC-RAS simulations
were performed. Thus, to the best of
authors’ knowledge, there is no study
comparing the results of these two
techniques  applying HEC-RAS 2D
simulation. 2D simulation is suggested by
(31) for future studies which is performed
in the current research. Moreover, the
implementation of precipitation as a
boundary condition is a newly added
feature in HEC-RAS, which is considered
in this study. Typically, discharge time
series are usually introduced as boundary
conditions as a common practice in similar
studies. This study conducts hydraulic
simulations utilizing both satellite and UAV
data, validating their outcomes against
observed data. It explores whether
engineers can exclusively depend on freely
available satellite data or if UAV flights are
indispensable for precise data acquisition
within specific locales. Traditionally, river
simulations have predominantly utilized
terrestrial mapping or satellite imagery.
This research breaks new ground by
integrating satellite and UAV data into
hydraulic simulations with new and
enhanced boundary condition implemented
in the numerical model, systematically
comparing their results with observed data
to ascertain the feasibility of relying solely
on satellite data. Additionally, it evaluates
the accuracy of each method relative to
real-world measurements, marking a
significant advancement in hydraulic
modeling methodologies. Moreover, the
study examines the incorporation of a new
feature in HEC-RAS software that
considers rainfall inputs, contrasting with
previous approaches that typically applied
discharge as boundary conditions.

Materials and Methods

Study area: to determine rainfall
intensity values for the Maroun watershed,
a 4.3 square kilometer area within the
Paskuhak region of Shiraz, Capital of Fars
province in Iran (UTM Zone 39R), data
from the local rainfall gauge managed by
Shiraz's water organization were utilized.
The precipitation and flood data were
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obtained from Shiraz's water organization.
The precipitation data were obtained using
a rain gauge that records and measures
rainfall consistency which was a Lambrecht
model with 0.1 mm accuracy. The flood
data was recorded at the location by the
instrumentation installed by the water
organization of Fars province, located
downstream of the study area. The
hydrometric station records the flood
discharge in one-hour intervals. The
watershed features shallow soil with a
medium to loamy texture, low permeability,
and moderate vegetation cover predominantly
composed of Pistacia atlantica (mountain
pistachio) yielding a curve number of 78
which was considered in the simulations.
Depth profiling data was defined using both
UAV and ALOS satellite imagery, as
depicted in Figure 1, with point A marking
the confluence of the river in both digital
elevation models (DEMs). This integration
of UAV and satellite data is crucial for
accurately characterizing the topography
and hydrological conditions of the Maroun
watershed, essential for effective rainfall
intensity assessment and hydrological
modeling efforts in the area.

The drone used in this research was the
Phantom 4 Pro model. During the aerial
imaging, the geographical position and the
static status of each image were recorded by
the internal GPS and IMU (Inertial
Measurement Unit) of the drone and
appended to the images. After transferring
the images to a computer, various
processing steps were carried out using
Agisoft PhotoScan software to create a
Digital Surface Model (DSM) and an Ortho
mosaic. During the processing, the images
were aligned using the geographical data
attached to each image. After aligning the
images, the matching process and the
creation of tie points resulted in the
generation of a sparse point cloud using the
Structure from Motion (SFM) algorithm.
SFM is a photogrammetric technique that
reconstructs 3D structures from a series of
overlapping 2D images. By analyzing
feature points across images taken from
different viewpoints, SFM estimates camera
positions (motion) and 3D geometry
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(structure). The following

involved in the SFM process:

1- Image Alignment with GPS/IMU Data:

Images were aligned using GPS and

IMU data to provide initial positional

information.

Feature Matching and Sparse Point

Cloud (SFM): Feature points were

matched across the aligned images,

generating a sparse point cloud.

Georeferencing with Ground Control

Points (GCPs): Ground control points

were used to georeference the sparse

point  cloud, ensuring  accurate
geographic positioning.

Dense Point Cloud Generation (MVS):

Multi-View Stereo (MVS) algorithms

were applied to generate a dense point

cloud from the sparse point cloud.

5- DEM/DSM and Ortho Mosaic Creation:
Digital Elevation Models (DEM) and
Digital Surface Models (DSM) were
created from the dense point cloud,
along with orthorectified mosaics for
detailed visualization.

To increase the accuracy of the final
extracted model, the sparse point cloud was
georeferenced  using  multi-frequency
satellite receiver ground stations. Upon
completing this process, a dense point cloud

steps were

2.

and then a Digital Elevation Model (DEM)
with an RMSE error of 2 cm in the vertical
and horizontal directions and a spatial
resolution of 5 cm were produced.

After obtaining the Digital Elevation
Model from the ALOS satellite data with a
spatial resolution of 12.5 meters, its
accuracy was assessed using the drone's
Digital Elevation Model to ensure reliable
results. The study utilizes two datasets: a
reference Drone DEM and a test ALOS
DEM. The Drone DEM, with its high
accuracy (2 cm RMSE and 5 cm
resolution), serves as the reference dataset.
On the other hand, the ALOS DEM is a
satellite-derived product with a resolution
of 12.5 m, chosen as the test dataset for
evaluation. Both DEMs are georeferenced
to the same coordinate system (e.g.,
WGS84 UTM) to ensure accurate spatial
overlap. For  wvalidation  purposes,
independent Ground Control Points (GCPs)
surveyed using high-precision GNSS (e.g.,
from multi-frequency ground stations) are
employed. These GCPs are used to validate
the accuracy of the drone DEM (already
done during processing). The process of
creating DEM using UAV is depicted in
figure 2.

ALOS DEM

Reach Start

61937493 m B\
3289633.38 m N Y

Reach End

62323205 mE
3292050.55m N

- UAVDEM
. Boundary

. Main River

Figure 1. Position of the digital elevation models (DEMs) from the two sources relative to each other.
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Feature
Matching

Initial Image
Alignment

hing to
create a sparse point
cloud

Using ground control
points to
georeference images

Georeferencing

Dense Point
Cloud
Generation

Digital Surface
Model Creation

Generating a dense
point cloud from the
sparse one

Creating digital
surface models and
ortho mosaics

Figure 2. UAV image processing workflow.

Numerical model: For conducting 2D
hydraulic simulation, version 6 of the
HEC-RAS  software was employed.
Developed by the US Army Corps of
Engineers, Hydrologic Engineering Center,
this model solves continuity and
momentum equations in the X and Y
directions, accounting for incompressible
flow. The model solves the 2D Shallow
Water Equation using the Finite Volume
algorithm with an implicit method. The
algorithm  can  handle  subcritical,
supercritical, and mixed flow regime.
Compared to traditional methods like finite
difference and finite elements, it provides
greater soundness and stability. This allows
for modeling of dry areas and sudden flow
rushes over the underlying terrain.

Regarding the mesh, HEC-RAS offers
both structured and unstructured meshes,
with each cell being orthogonal to the
others. This feature enables the creation of
triangle, square, rectangle and five- to
six-sided cells, resulting in high-speed
computation and accurate representation of
the underlying terrain.

Model calibration: The numerical
simulation of the digital elevation models
(DEMs) derived from ALOS satellite and
UAV data using the regional water
authority's data was conducted in
HEC-RAS software. The 2D simulation of
the DEMs was discretized within the
software  environment, and multiple
simulation runs were executed to determine
the optimal mesh for each DEM model. The
simulation results can assist us in accurately

V€

determining the appropriate mesh size. In
this study, to reach an acceptable degree of
mesh sizes, simulations with different mesh
sized ranging from 20m to 1.5 m were
performed for UAV and ALOS DEMs. It
was found that after a certain value,
reducing mesh sizes did not have
significant influences on the accuracy of
results. Thus, a mesh size of 2 meters by 2
meters was selected for the UAV-derived
DEM, and 5 meters by 5 meters for the
ALOS-derived DEM, based on their
suitability for the Maroun watershed. In this
study, Precipitation was introduced as
boundary condition, which is a feature
recently added to HEC-RAS. Additionally,
the normal depth was considered as
downstream boundary condition as well.
For the ALOS-derived DEM, downstream
boundary conditions considered normal
depth, while rainfall was applied as a
boundary condition across the entire
watershed. Due to the smaller coverage area
of the UAV-derived DEM compared to the
entire Maroun watershed, uniform rainfall
input could not be applied to both DEMs.
To address this issue, after simulating the
ALOS-derived DEM at point A (Figure 1),
where it diverges from the UAV-derived
DEM, the flow hydrograph was extracted
and used as a boundary condition for the
UAV-derived DEM. Among the parameters
requiring calibration in the mathematical
models is the bed roughness coefficient.
Typically, the roughness coefficient varies
across different cross-sectional areas to
achieve acceptable conformity  with
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measured flow parameters such as depth or
discharge. In this study, calibration of the
HEC-RAS model was feasible due to the
presence of a hydrometric station on the
Maroun River.

The Manning's roughness coefficient (n)
was obtained using the Cowan method as
follows:
n=(n0 + nl +n2 +n3 +n4) m5 (1

The base roughness coefficient n0 to n4
is not chosen based on the channel material.
The coefficients n0 to n4, respectively,
represent the irregularities of the channel
cross-section, the presence of obstacles in
the channel path, vegetation cover, and the
degree of meandering of the channel
path. After conducting a field survey and

regarding the value suggested by Cowan
the values of n0 to n5 were substituted and
the value of 0.039 was obtained as the
manning roughness coefficient:

(0.009 + 0.002 +0.003 + 0.020)1.15 = 0.039 (2)

The above number was introduced as the
initial value for validating the numerical
model in the software. The flood
hydrograph of February 16, 2017, was also
chosen for calibration, and the Manning
calibration model was performed as a
result, resulting in a calibrated Manning
coefficient of 0.055. Figure 3 shows the
results of validating the numerical model.
All hydrographs represent simulated versus
observed discharge at the downstream
hydrometric station of the study reach.

= = = Calibrated
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Figure 3. Calibration Hydrograph of Manning Coefficient based on February 16, 2017, event.

In addition, error metrics were applied to
compare the outputs of ALOS and UAV

1€)

with observed data that are shown in
Table 1.



A EXE AN b)w XY 2,90 sdligyi cblas le.&:vuég).’

Table 1. Statistical indicators used in the research.

Statistical index Equation
n (. v.)2
Mean squared error RMSE = Xisa (i —y)*
n
. (i —yi)?
Normalized root mean square error NRMSE = M
i=1%i
n
Relative mean error index MRE =— RE;
i=1
. . . . Qo - Qp
Relative error in peak discharge calculation REg, = 0 x 100
P
Relative error in time to peak calculation RE;p = ‘ ; Pl % 100
P
Results and Discussion demonstrating the practical utility of

Validation of the numerical model: After
calibrating the numerical model, flood
simulation using both digital elevation
models (DEMs) derived from ALOS satellite
and UAV sources, the results were compared
with recorded flood data (Figure 4).

As observed, the overall shape of the
hydrographs has been simulated with
acceptable accuracy. The presence of a
stream gauge station at the watershed outlet
and rainfall measurements within the
watershed significantly contributed to the
desirable reconstruction of the hydrograph
shape. This consistency in both the rising
and falling limbs of the hydrograph
compared to its peak is noteworthy. In other
words, the simulation accuracy, using both
bathymetry sources, is higher at lower flow
rates compared to the peak flow intensity of
the hydrograph. These results underscore
the importance of comprehensive data
collection within the watershed, which
enhances the accuracy of hydraulic
simulations. The accurate representation of
the hydrograph shape, particularly at lower
flow rates, suggests that the models are
well-calibrated and capable of capturing the
essential dynamics of the watershed's
response to rainfall. Consequently, the high
fidelity of these simulations can
significantly improve flood forecasting and
water resource management in the region,

(kA )

integrating precise hydrometric and rainfall
data in hydraulic modeling efforts.

It is noteworthy that the peak flows
predicted by the ALOS and UAV models
are close to each other. One reason for this
could be the boundary condition input
introduced from the ALOS model to the
UAV model. In other words, the UAV
hydrograph model has accepted the ALOS
hydrograph model as its upstream input and
has simulated its course along the river.
Therefore, the predicted maximum flow
values of both models are close to each
other. However, as observed, the time to
reach peak flow in the UAV model is
consistently later than in the ALOS model.
The reason for this could be attributed to
the difference in spatial resolution between
the ALOS-derived digital elevation model
(DEM) and the UAV-derived DEM. The
spatial resolution of the ALOS satellite data
is 12.5 meters, whereas the UAV data has a
spatial resolution in the range of
millimeters to centimeters. In other words,
the terrain or depth sounding in the ALOS
model is interpolated at points spaced 12.5
meters apart, whereas in the UAV model,
interpolation is done at points spaced only a
few millimeters or centimeters apart. This
higher resolution in UAV-based allows
them to capture the underlying terrain’s
details more accurately, including channels,
meandering, ridges, micro-drainage networks,
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and obstacles. As a result, water and natural
drainage are better represented, leading to
increase runoff concentration in the main
channel and larger time to peak. In contrast,
satellite-based DEMs  have  courser
resolutions, which fail to capture these finer
features, and generally oversimplify the
path, resulting in less runoff concentration
and a shorter time to peak. Additionally,
UAV DEMs ensure higher vertical
accuracy compared the satellite DEMs.

Uncertainty in elevation data alter flow
velocities and cause artificial water
retention, which contribute to shorter time
to peak (15, 32 and 33).

Consequently, the flood travel time in
the UAV model is expected to be longer
than in the ALOS model and closer to
reality. Figure 5 illustrates a common
segment of the path estimated by both UAV
and ALOS sources.
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Figure 5. Common segment of bathymetry generated by ALOS and UAV.

By examining this figure, it is evident
that the terrain topography in the UAV
model is more accurate and closer to
reality. The UAV model's higher spatial
resolution allows for a more precise
representation of the terrain's features,
which significantly enhances the accuracy
of hydraulic simulations. Regarding the
peak points of the hydrographs, it is
important to note that the flood data
recorded at the stream gauge station was
captured at hourly intervals. Consequently,
in many instances, the peak point appears
flattened because the actual peak of the
flood occurred during the unrecorded time,
and only the hours before and after were
documented. This limitation contrasts with
the simulated hydrographs in the numerical
model, where the time intervals can be
adjusted to provide a more detailed
representation of the flood event. In the
current study, outputs were recorded at 6-
minute intervals, allowing for a finer
resolution of the peak graph. This finer
resolution enables the model to capture the
rapid changes in flow rates that occur
during the peak of the flood, which are
often missed in observational data due to
the coarser time intervals. The result is a
more accurate and detailed hydrograph that
better represents the dynamics of the flood
event. The ability to adjust time intervals in
numerical models is a  significant
advantage, as it allows researchers to
capture and analyze the critical moments of
a flood with greater precision. This
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enhanced accuracy is particularly important
for flood risk management and mitigation,
as it provides more reliable data for
decision-making processes. The detailed
hydrographs produced by the UAV model
can help in understanding the flood
behavior more comprehensively, leading to
better-informed  strategies for  flood
prevention and control. The comparison

between the  blocky  observational
hydrographs and the finely detailed
simulated hydrographs highlights the

importance of using high-resolution data
and appropriate time intervals in hydraulic
modeling. This approach ensures that the
peak flow rates and other critical aspects of
the flood event are accurately represented,
ultimately contributing to more effective
flood management practices. However, it is
worth noting that ALOS data, despite being
a free source, can still be useful for
predicting peak discharge, though it tends
to underestimate the time to peak.

In the study, maximum depths from both
ALOS and UAV datasets were compared,
revealing that the maximum depth from the
UAV digital elevation model (DEM) is less
than that from the ALOS DEM (Table 2).
This indicates that the UAV DEM, with its
finer spatial resolution, enhances simulation
accuracy, resulting in a lower maximum
depth simulated for the flood event. The
finer resolution of the UAV DEM allows
for more precise capture of terrain features,
leading to more accurate hydraulic
modeling. Throughout this research, all data
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consistently showed higher maximum
depths in the ALOS DEM compared to the
UAV DEM. This trend underscores the
superior accuracy of UAV-derived data in
representing  topographic  details and
simulating flood depths. The improved
accuracy of the UAV DEM can significantly
enhance flood risk assessments and

management practices by providing more
reliable data for hydraulic simulations.
Consequently, the use of UAV-derived
DEMs in  hydrological studies is
recommended for achieving  higher
precision in flood modeling and other
related applications.

Table 2. Maximum Water Depths in the Simulation Model of ALOS and UAYV Digital Elevation Models.

Max. water depth (m)

Event Percentage of difference
ALOS UAV
A 2.96 2.49 17.25%
B 3.21 2.64 19.49%
C 2.15 1.87 13.93%
D 1.81 1.61 11.70%
E 0.93 0.82 12.57%
F 1.35 1.18 13.44%
G 1.07 1.03 3.81%
H 0.47 0.45 4.35%
I 0.86 0.77 11.04%
J 1.56 1.34 15.17%

Table 3 also displays various error
metrics obtained from comparing outputs
of the UAV and ALOS models with

observational data. As observed, the UAV
model demonstrates higher accuracy in
simulating all hydraulic parameters.

Table 3. Average Error Metrics in Predicting Hydraulic Parameters by UAV and ALOS Models.

DEM RMSE (QP) NRMSE (QP) MRE (QP) % RE (QP) % RE (TP) %
ALOS 0.024 20.580 2.420 14.600 9.167
UAV 0.022 12.162 2.210 10.916 1.630

In which RMSE and NRMSE are mean
squared error and normalized mean squared
error, respectively. REQP and RETP
designate relative error in peak discharge
and time to peak calculation and MRE
stands for relative mean error index. n is the
number of flood event data, xi and yi are
observed and predicted peak discharge,
respectively. QO is the observed discharge
at the hydrometric station, To is the time to
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reach the peak flow of observation data, Qp
is calculated peak flow and Tp is the time to
reach the calculated peak flow.

The results of the current study were
compared with findings from similar
studies. (34) reported that reducing the
spatial resolution of the digital elevation
model (DEM) leads to a 10% increase in
flow depth, which aligns with the findings
of this research. Specifically, the average
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flow depth in the UAV model was found to
be 10% less than that of the ALOS model.
Additionally, (21) demonstrated that
simulations of hydraulic parameters using
UAV-derived DEMs  exhibit higher
accuracy compared to satellite-derived data.
This corroborates the current study's results,
which indicate that UAV data, with its finer
spatial resolution and reduced error
margins, provides more reliable inputs for
hydraulic modeling and flood prediction.
Such comparisons highlight the importance
of selecting appropriate DEM sources for
accurate hydraulic simulations,
underscoring the significant advantages of
using UAV-derived data in various
hydrological applications.

Recent studies have explored the use of
UAV derived DEMs for hydraulic
modeling, comparing them to satellite and
LiDAR-based DEMs. The results show that
UAYV DEMs provide consistent outcomes in
flood simulations as well as affordable and
accurate topographic data collection for
small-scale flood hazard mapping (8). In
tropical areas, UAV-DEMs provided
comparable results to high-precision
topography models, despite challenging
field conditions (35). UAV-DEMs have
also proven competitive with LIDAR-based
DEMs for urban stormwater simulation,
with flight altitude being the most
influential factor affecting DEM quality
(36). These comparisons highlight the
consistency and validation of the current
study's findings with prior research,
emphasizing the advantages of using
UAV-based digital elevation models for
simulating hydraulic parameters due to their
higher spatial resolution and enhanced
accuracy. Additionally, these findings
suggest that UAV-DEMs offer a promising
alternative ~ for  hydraulic = modeling,
particularly in areas where high-resolution
topography data is scarce or frequent
updates are required.

Understanding the limitations, opportunities
and challenges of both UAV and satellite
data is crucial for scientists and engineers to
manage their hydraulic and river
engineering studies and enhance the
reliability of their models. Both approaches
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have several limitations that can impact the
accuracy and reliability of study findings.
Spatial resolution is one of the most
important differences, while UAVs provide
high spatial resolution data, they can cover
a limited area, making them suitable for
small-scale studies. On the other hand,
satellites can provide DEMs for large areas
with lower spatial resolution (37). Both
satellite and UAV data can be affected by
weather and environmental conditions.
Windy, rainy and extreme temperatures can
either limit the application of UAVs or
decrease their precision. Cloud cover can
blur optical sensors of satellites and create
gaps in data (38). Processing UAV data
requires specialized software and expertise.
However, satellite data can be easily
accessed through available databases
(39). Deploying UAVs in remote areas
is logistically challenging. Additionally,
obtaining probable permissions can be
time-consuming, however satellite data is
accessible in remote areas with lower
resolutions (40). More details on limitations
of challenges of UAV and satellite DEMs
can be found at (41).

Although UAVs (Unmanned Aerial
Vehicles) have demonstrated great potential
in improving flood modeling, several
studies  have  identified limitations
associated with their use. (21) reported that
in areas covered with trees, UAVs are
unable to capture accurate terrain data,
leading to vertical errors. This limitation
necessitates additional ground surveys to
obtain detailed and high-resolution data.
Furthermore, (31) stated that UAV data
acquisition can be time-consuming and
costly, particularly when covering large
areas. Additionally, factors such as rain,
strong winds, or low visibility can hinder
UAVs' ability to capture high-quality
images and maintain stable flights. (42)
tested UAV for topographic modeling
through aerial photography in the Surena
River in Norway. They found that for high
spatial resolution, it is preferable to have
sunny weather; however, if suitable weather
conditions are not available, it is possible to
edit the brightness and reflections on
the water surface during processing.
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Nevertheless, in some cases, even the most
advanced processing methods cannot
correct errors resulting from low-quality
images caused by reflections, shadows,
vegetation, or poor data quality.

Satellites can cover large areas, but often
at a lower spatial resolution that affect the
detail and accuracy of the topographic and
bathymetric models used in hydraulic
simulations. Cloudy weather can obstruct
optical sensors leading to gaps in data or
the need for image correction. Satellite data
is more readily accessible but may require
significant post-processing to be useful for
specific applications (43).

Conclusion

This study underscores the effectiveness
of UAV-derived data in improving
hydraulic modeling accuracy for flood
management,  successfully  replicating
hydrograph shapes with contributions from
stream hydrometric station data and
comprehensive  rainfall  measurements
within the watershed. This study further
substantiates the advantages of UAV-based
digital elevation models, which exhibit
superior accuracy in flood simulations,
while also recognizing cost-effectiveness
and widespread availability of ALOS data
for hydrological applications. The key
findings of this study can be summarized as
follows:

1- The UAV model demonstrated consistently
superior performance in predicting
hydraulic parameters, yielding lower
maximum depths and reduced average
flow velocities compared to the ALOS
model. This improved performance can
be attributed to the finer spatial
resolution of the UAV model. Error
metrics further highlighted the enhanced
simulation capabilities of the UAV
model.

2- The peak discharge estimated using the
UAV DEM was 0.85% higher than the
observed data, while the peak discharge
estimated using the ALOS satellite DEM
was 5.2% higher than the observed data.

3- The time to peak estimated using the
UAV DEM was nearly identical to the

ey

observed data, whereas the time to peak

estimated using the ALOS satellite DEM

was 8.6% shorter than the observations.

4- The maximum depth estimated using the
UAV DEM was 14.2% lower than that
estimated using the ALOS satellite
DEM, indicating the higher accuracy of
the UAV data with a reduced error rate
compared to the satellite data.

5- The implementation of rainfall as a new
boundary condition in this study has
proven to be effective, suggesting that
separate hydrological studies may not be
required when conducting hydraulic
simulations.

6- ALOS satellite data, despite its coarser
spatial  resolution of12.5  meters,
demonstrated acceptable accuracy in
predicting peak discharge, making it a
cost-effective alternative. However, the
ALOS model consistently underestimated
the time to peak flow, which can be
attributed to its limited spatial detail.

It should be mentioned that although
applying UAV and ALOS DEMs has many
advantages, there are limitations associated
with these approaches, like many others.
For instance, limitations such as flight
regulations, weather dependency, flight
time, cost and data processing associated
with UAYV, while low resolution, calibration,
cloud cover, post-processing and interpolation
in large areas are restrictions that ALOS
DEMs may face. As a suggestion,
deploying more advanced sensors on UAVs
and employing multiple UAVs for
simultaneous data collection to improve the
data quality can be considered. Machine
learning algorithms can be used to
preprocess UAV and satellite data to
accelerate the analysis process and improve
the results.

Alternative free satellite data for flood
studies can be suggested for future studies.
Sentinel-1  which  provides synthetic
aperture radar (SAR) imagery, highly
effective for flood detection, even in cloudy
conditions or at night, with resolution of 10
m can be an alternative source. Sentinel-2
which offers high-resolution multispectral
imagery (10-20 m) is useful for mapping
flood extent and monitoring vegetation/
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water interactions. ALOS PALSAR, a
radar-based dataset suitable for terrain
modeling and flood inundation detection,
especially in vegetated areas, can be
considered  for  future  suggestions.
Additionally, alternative UAV options to
improve flood mapping like Fixed-Wing
UAVs Suitable for large-scale mapping
with longer flight durations and efficient
area coverage and Multi-Rotor UAVs ideal
for detailed, localized flood assessments in
areas with complex terrain and capable of
carrying LiDAR sensors for high-accuracy
elevation data can be considered for future
studies as well.
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