ارزیابی عملکرد مدل های مبتنی بر تجزیه داده و داده های ماهواره گریس برای مدل سازی سطح آب زیرزمینی (مطالعه موردی: آبخوان آسپاس)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 نویسنده مسئول، دانشیار گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 دانش‌آموخته دکتری مهندسی منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

سابقه و هدف: برداشت بی رویه از آب‌های زیرزمینی باعث شده است که در سال‌های اخیر بیشتر سفره‌های آب زیرزمینی ایران با افت سطح آب مواجه شوند. این موضوع باعث شده است که استفاده از بیشتر سفره‌های آب زیرزمینی ممنوع شود، اکثر قنات‌ها خشک شده‌ و اغلب چشمه‌های دائمی کاهش قابل‌توجهی در آبدهی خود داشته‌اند. لذا بررسی وضعیت سطح آب زیرزمینی بیش از پیش باید مورد توجه قرار گیرد. روش‌ها و ابزارهای مختلفی برای بررسی این موضوع مورد استفاده قرار گرفته‌اند. در بیشتر این مطالعات از مدل-های هوش مصنوعی استفاده شده است. در بین این مدل‌های هوشمند، مدل رگرسیون بردار پشتیبان (SVR) عملکرد خوبی داشته‌اند. در جهت بهبود عملکرد این مدل‌ها، در سال‌های اخیر استفاده از ابزارهای پیش پردازش و تشکیل مدل‌های ترکیبی مورد توجه قرار گرفته است. یکی از این ابزارها، تجزیه مد تجربی یکپارچه کامل (CEEMD) است. در این تحقیق از ترکیب این ابزار با مدل رگرسیون بردار پشتیبان برای بررسی سطح آب زیرزمینی در آبخوان آسپاس استفاده شد. سپس نتایج آنها با نتایج ماهواره ثقل سنجی گریس (GRACE) مقایسه شد.
مواد و روش‌ها: زیرحوضه آسپاس با کد 4321 در شمال غربی حوضه طشک بختگان و مهارلو در استان فارس قرار دارد. برای بررسی سطح آب زیرزمینی در این زیرحوضه، از مدل ماشین بردار رگرسیونی با 4 کرنل (هسته) شامل: کرنل‌های چند جمله‌ای (Poly)، RBF، سیگموید و خطی (Lin) استفاده شد. سپس با استفاده از ابزار پیش پردازش CEEMD و ترکیب آن با مدل هوشمند رگرسیون بردار پشتیبان یک مدل ترکیبی حاصل شد. هنگامی که یک سیگنال اولیه با استفاده از روش CEEMD تجزیه شود و سیگنال های فرعی حاصل به عنوان ورودی به مدل هوشمند رگرسیون بردار پشتیبان استفاده شود، مدل ترکیبی CEEMD-SVR حاصل می‌شود. برای مقایسه عملکرد مدل‌های هوش مصنوعی از داده‌های ماهواره‌ای استفاده شد. برای این منظور از محصولات ماهواره گریس با 6 الگوریتم مختلف استفاده شد. برای بررسی کارایی روش‌ها از معیارهای ارزیابی ضریب تعیین (R2)، ریشه میانگین مربعات خطا (RMSE) و معیار اطلاعات آکائیک (AIC) استفاده شد.
یافته‌ها: نتایج نشان داد که مدل‌های هوشمند دارای عملکرد بهتری نسبت به محصولات ماهواره گریس بوده‌اند. لذا جهت پیش‌بینی مقادیر سطح آب زیرزمینی استفاده از مدل‌های هوشمند به خصوص مدل CEEMD-SVR مناسب‌تر می‌باشد. یکی از مزیت‌های داده-های ماهواره‌ای این است که به صورت به روز شده در دسترس قرار می‌گیرند در صورتی که بتوان بر مبنای یک روش مناسب مقادیر داده‌های ماهواره‌ای را به مقادیر مشاهداتی نزدیک نمود می‌توان به صورت به روز شده داده‌های سطح آب زیرزمینی را برآورد نمود.
نتیجه گیری: در این مطالعه از مدل رگرسیون بردار پشتیبان برای ارزیابی تغییرات سطح آب زیرزمینی در سفره آبرفتی آسپاس واقع در حوضه طشک- بختگان- مهارلو استفاده شد. با استفاده از چاه‌های مشاهده‌ای در منطقه، هیدروگراف آب زیرزمینی آبخوان ترسم شد. تغییرات سطح آب زیرزمینی در سفره با استفاده از مقادیر بارش، دما، پارامترهای تبخیر به‌دست‌آمده از ترسیم نقشه‌های مختلف و سطح آب زیرزمینی در سفره برآورد شد. ابزار پیش پردازش CEEMD استفاده شد. نتایج نشان داد که استفاده از CEEMD عملکرد مدل رگرسیون بردار پشتیبان را تا 08/3 درصد بهبود بخشیده است. مقایسه نتایج الگوریتم‌های پردازشی نشان داد که الگوریتم پردازش GFZ با ضریب تعیین 71/0 و مقدار RMSE ، 15/39 بهترین عملکرد را داشت. در مرحله بعد، عملکرد مدل CEEMD-SVR با الگوریتم GFZ مقایسه شد. نتایج نشان داد که مدل CEEMD-SVR عملکرد بهتری داشته (با ضریب تعیین 77/0 و مقدار خطای 90/25) و قابلیت استفاده برای مدل‌سازی و پیش‌بینی سطح آب زیرزمینی در سایر سفره‌های آب زیرزمینی به‌ویژه آبخوان آسپاس را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance evaluation of models based on Data Decomposition and GRACE Satellite Products for Groundwater Level Modeling (case study: Aspas aquifer)

نویسندگان [English]

  • Maryam Shahbazi 1
  • heidar zarei 2
  • abazar solgi 3
1 Ph.D. Student of Water Resources Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Corresponding Author, Associate Prof., Dept. of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Ph.D. Graduate of Water Resources Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Background and Objectives: Excessive extraction of groundwater has caused most of Iran's groundwater aquifers to face a drop in water level in recent years. This has subject caused the use of most of the aquifers to be prohibited, most of the Qanats have dried up and most of the permanent springs have had a significant reduction in their water supply. Therefore, the investigation of the groundwater level should be given more attention. Various methods and tools have been used to investigate this issue. Artificial intelligence models have been used in most of these studies. Among these intelligence models, Support Vector Regression (SVR) model has performed well. In order to improve the performance of these models, in recent years, the use of pre-processing tools and the formation of hybrid models have been considered. One of these tools is complementary ensemble empirical mode decomposition (CEEMD). In this research, the combination of this tool with the SVR model was used to check the groundwater level in the Aspas aquifer. Then their results were compared with the results of the Gravity recovery and climate experiment (Grace) satellite.

Materials and methods: The Aspas subbasin with code 4321 is located northwest of the Tashk-Bakhtegan and Maharlu basin in Fars Province. To check the groundwater level in this sub-basin, the SVR model with 4 kernels include: polynomial kernels, RBF kernel, sigmoid kernel, and linear kernel (Lin) was used. Then discusses the formation of a hybrid model obtained from the combination of CEEMD with the SVR intelligence model. When an initial signal is decomposed using the CEEMD method, and the resulting sub-signals are used as inputs to the SVR intelligence model, the hybrid model of CEEMD-SVR is obtained. Satellite data was used to compare the performance of artificial intelligence models. For this purpose, Grace satellite products with 6 different algorithms were used. The parameters the coefficient of determination (R2), root mean square error (RMSE), and the Akaike information criterion (AIC), was used to examine the efficiency of the methods.

Results: The results showed that intelligent models had better performance than Grace satellite products. Therefore, it is more appropriate to use intelligent models, especially the CEEMD-SVR model, to predict the values of the groundwater level. One of the advantages of using satellite data is that it is available up-to-date. If the satellite data values can be approximated to the observed values (in a similar statistical period) based on a suitable method, the groundwater level data can be estimated in an up-to-date manner.

Conclusion: In this study, the SVR model was used to evaluate the groundwater level changes in the Aspas alluvial aquifer located in the Tashk-Bakhtegan-Maharlu basin. Using observation wells in the area the aquifer groundwater hydrograph was plotted. Changes in groundwater level in the aquifer were estimated using the values of precipitation, temperature, and evaporation parameters obtained from drawing different maps, and groundwater level in the aquifer. The preprocessing tool of CEEMD was used. The results showed that the use of the CEEMD has improved by 3.08% the performance of the SVR model. The GRACE satellite products are used. The comparison of the results of processing algorithms showed that the GFZ processing algorithm had the best performance with a coefficient of determination of 0.71 and an RMSE value of 39.15. In the next step, the performance of the CEEMD-SVR model was compared with the GFZ algorithm. The results showed that the CEEMD-SVR model performed better (R2=0.77, RMSE=25.90) and has the ability to be used for modeling and predicting the groundwater level in aquifers, especially the Aspas aquifer.

کلیدواژه‌ها [English]

  • "CEEMD"
  • "Groundwater Level"
  • "GRACE satellite"
  • "Aspas aquifer"
1.Sattari, M.T., Mirabbasi, R., Shamsi Sushab, R., and Abraham, J. 2017. Prediction of Groundwater Level in Ardebil Plain Using Support Vector Regression and M5 Tree Model. National Groundwater Association. 56: 4. 636-646.
2.Rajaei, T., Ebrahimi, H., and Nourani, V. 2019. A review of the artificial intelligence methods in groundwater level modeling. J. of Hydrology. 572: 336-351.
3.Mirarabi, A., Nassery, H.R., Nakhaei, M., Adamowski, J., Akbarzadeh, A.H., and Alijani, F. 2019. Evaluation of data‑driven models (SVR and ANN) for groundwater‑level prediction in confined and unconfined systems. Environmental Earth Sciences. 78: 489.
4.Huang, Y., Schmitt, F.G., Lu, Z., and Liu, Y. 2009. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Hydrology. 373: 1-2. 103-111.
5.Sang, Y.F., Wang, Z., and Liu, C. 2012. Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Hydrology. 424: 425. 154-164.
6.Lin, M.L., Tsai, C.W., and Chen, C.K. 2021. Daily maximum temperature forecasting in changing climate using a hybrid of Multi-dimensional Complementary Ensemble Empirical Mode Decomposition and Radial Basis Function Neural Network. Journal of Hydrology: Regional Studies, 38: 100923.
7.Adamowski, J., and Chan, F.H. 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology. 407: 1-4. 28-40.
8.Suryanarayana, C.H., Sudheer, C.H., Mahammood, V., and Panigrahi, B.K. 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing. 145: 324-335.
9.Bahmani, R., and Ouarda, T.B.M.J. 2020. Groundwater level modeling with hybrid artificial intelligence techniques. J. of Hydrology. 595: 1-12.
10.Bahmani, R., Solgi, A., and Ouarda, T.B.M.J. 2020. Groundwater level simulation using gene expression programming and M5 model tree combined with wavelet transform. Hydrological Sciences J. 65: 8. 1430-1442.
11.Eskandari, A., Faramarzyan Yasuj, F., Solgi, A., and Zarei, H. 2018. Evaluation of Combined ANFIS with Wavelet Transform to Modeling and Forecasting Groundwater Level. J. of Watershed Management Research. 9: 18. 56-69. (In Persian)
12.Salehi, S.M., Radmanesh, F., Zarei, H., Mansouri, B., and Solgi, A. 2019. A Combined Time Series-Wavelet Model for Prediction of Ground Water Level (Case Study: Firuzabad Plain). J. of Irrigation Sciences and Engineering (JISE). 41: 4. 1-16. (In Persian)
13.Eskandari, A., Solgi, A., and Zarei, H. 2018. Simulating Fluctuations of Groundwater Level Using a Combination of Support Vector Machine and Wavelet Transform. Irrigation Sciences and Engineering. 41: 1. 165-180. (In Persian)
14.Frappart, F., and Ramillien, G. 2018. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing. 10: 6. 829-854.
15.Hao, Z., Zhao, H., Zhang, C., Zhou, H., Zhao, H., and Wang, H. 2019. Correlation analysis between groundwater decline trend and human-induced factors in bashang region. Water. 11: 3. 473-496.
17.Behzadi Sheikh Rabat, R. 2017. Estimation of groundwater level and mass changes due to geodynamic effects using GRACE satellite data. Master's Thesis, Department of Earth Sciences, Shahrood University of Technology, 118p. (In Persian)
18.Soleimani Sardoo, F., Rafiiei sardooi, E., nateghi, S., and Azareh, A. 2021. Evaluation of groundwater level fluctuations in Jiroft plain using GRACE satellite images. Environmental Erosion Research J. 10: 4. 58-73. (In Persian)
19.Ashraf, S., Nazemi, A., and AghaKouchak, A. 2021. Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports. 11: 9135. 1-10.
20.Solgi, A. 2013. Stream flow forecasting using combined Neural Network Wavelet model and comparsion with Adaptive Neuro Fuzzy Inference System and Artificial Neural Network methods (Case Study: Gamasyab River, Nahavand). Master's Thesis, Department of water resources engineering, Shahid Chamran University of Ahvaz, 164p. (In Persian)
21.Cortes, C., and Vapnik, V. 1995. Support-Vector Networks. Machine Learning. 20: 273-295.
22.Raghavendra, N.S., and Deka, P.C. 2014. Support vector machine applications in the field of hydrology: A review. Applied Soft Computing. 19: 372-386.
23.Amirat, Y., Benbouzidb, M., Wang, T., Bacha, K., and Feld, G. 2018. EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics. 133: 202-209.
24.Wu, Z., and Huang, N.F. 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceeding of The Royal Society A. 460A. 1597-1611.
25.Alvanitopoulos, P.F., Andreadis, I., Georgoulas, N., Zervakis, M. and Nikolaidis, N. 2014. Solar Radiation Time-Series Prediction Based on Empirical Mode Decomposition and Artificial Neural Networks. In: 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI). IFIP Advances in Information and Communication Technology, AICT-436. Springer, Rhodes, Greece: 447-455.
26.Muñoz-Gutiérrez, P.A., Giraldo, E., Bueno-López, M., and Molinas, M. 2018. Localization of Active brain sources from EEG signals using empirical mode decomposition: a comparative study. Front. Integr. Neurosci. 12: 55.
27.Swenson, S., and Wahr, J. 2002. Methods for inferring regional surface mass anomalies from GRACE measurements of time-variable gravity. Journal of Geophysical Research. 107: B9. ETG 3-1-ETG 3-13.
28.Swenson, S.C., and Wahr, J. 2009. Monitoring the water balance of Lake Victoria, East Africa, from space.
J. of Hydrology, 370: 1-4. 163-176.