اصلاح شاخص خشکسالی کشاورزی رطوبت خاک استاندارد شده بر اساس توزیع‌های احتمالاتی به‌منظور استفاده در اقلیم‌های مختلف ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران.

2 گروه علوم و مهندسی آب، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

چکیده

سابقه و هدف: بر اساس نوع خشکسالی شامل هواشناسی، کشاورزی و هیدرولوژیکی، خشکسالی می‌تواند با کمبود در یکی از متغیرهای بارش، رطوبت خاک و رواناب نسبت به میانگین بلندمدت آغاز شود. خشکسالی کشاورزی بیانگر کاهش رطوبت خاک و دارای اثرات مهمی از جمله کاهش عملکرد محصولات کشاورزی است. یکی از پرکاربردترین روش‌های پایش خشکسالی استفاده از شاخص‌های استاندارد شده می‌باشد. هدف از پژوهش حاضر اصلاح شاخص خشکسالی کشاورزی رطوبت خاک استاندارد شده (SSI) با انتخاب توزیع مناسب برازش‌یافته بر متغیر رطوبت خاک در اقلیم‌های مختلف ایران می‌باشد.
مواد و روش‌ها: بدین منظور از داده‌های اندازه‌گیری شده روزانه در 40 ایستگاه سینوپتیک و داده‌های رطوبت خاک ماهانه در دو لایه اول (0-7 سانتی‌متر) و دوم (7-28 سانتی‌متر) از پایگاه ERA5 طی سال‌های 2020-1979 استفاده شده است. پس از جمع‌آوری داده‌های مورد نیاز تحقیق، دقت داده‌های پایگاه ERA5 در مقایسه با مقادیر اندازه‌گیری شده سه متغیر بارش، دمای میانگین و تبخیر و تعرق پتانسیل با استفاده از معیارهای ضریب تبیین (R2)، میانگین خطای اریبی (MBE) و شاخص پراکندگی (SI) مقایسه شد. توزیع‌های برتر برازش یافته روی متغیرهای رطوبت خاک لایه اول و دوم از بین 49 توزیع مختلف در نرم‌افزار EasyFit 5.5 با انجام آزمون کلموگروف- اسمیرنوف در سطح معنی‌داری یک و پنج درصد مشخص شدند. در ادامه برای 40 ایستگاه مورد مطالعه، 12 شاخص SSI در مقیاس‌های زمانی 1، 3 و 6 ماهه محاسبه شده است. در نهایت مشخصات خشکسالی شامل تعداد رخدادها، فراوانی، مدت و شدت خشکسالی برای تمامی شاخص‌ها محاسبه و در اقلیم‌های مختلف با یکدیگر مقایسه شدند.
یافته‌ها: بر اساس معیار شاخص پراکندگی بیشترین دقت داده‌های ERA5 به ترتیب مربوط به متغیرهای دما، تبخیر و تعرق پتانسیل و بارش است. نتایج برازش توزیع‌ها نشان‌دهنده‌ی برازش معنی‌دار توزیع گاما به عنوان توزیع برتر به ترتیب تنها در 11 و 5 درصد سری‌های زمانی رطوبت خاک لایه اول و دوم در ایستگاه‌های مختلف است. سه توزیع برتر برازش یافته روی رطوبت خاک لایه اول توزیع‌های لوگ‌نرمال، بتا و لجستیک و برای رطوبت خاک لایه دوم به ترتیب توزیع‌های لجستیک، بتا و نرمال می‌باشند. حداقل فراوانی خشکسالی در ایستگاه‌های آباده، انار، میناب و کرمان و به ترتیب برابر 7، 3، 4 و 2 درصد و حداکثر فراوانی در ایستگاه‌های ایرانشهر، بم، زابل و ایرانشهر و به ترتیب برابر 4/18، 8/17، 0/21 و 4/25 درصد است. کمترین و بیشترین مدت خشکسالی کشاورزی به ترتیب در ایستگاه‌های سنندج و انار به ترتیب برابر با 18 و 64 ماه رخ داده است. شدت خشکسالی‌ها از شاخص بر مبنای توزیع گاما به شاخص بر مبنای توزیع برتر در رطوبت لایه اول خاک از 53/1 به 44/1 (خشکسالی شدید به خشکسالی متوسط) و در رطوبت لایه دوم خاک از 91/1 به 65/1 کاهش می‌یابد.
نتیجه‌گیری: حساسیت مشخصات خشکسالی کشاورزی بر مبنای نوع توزیع استفاده شده در محاسبه شاخص، در اقلیم‌های خشک‌تر و در رطوبت خاک لایه دوم تغییرات بیشتری را نشان می‌دهد. به طوری‌که در برخی موارد با توجه به نوع توزیع استفاده شده در محاسبه شاخص طبقه خشکسالی تغییر می‌یابد. به طور کلی نتایج تحقیق حاضر بیانگر ضرورت بررسی و انتخاب توزیع برتر به جای توزیع گاما در محاسبه شاخص خشکسالی استاندارد شده کشاورزی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Standardized soil moisture agricultural drought index modification based on probability distributions to using in different climates of Iran

نویسندگان [English]

  • Pardis Nikdad 1
  • Mehdi Mohammadi Ghaleni 2
  • Mahnoosh Moghaddasi 1
1 Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran.
2 Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
چکیده [English]

Background and Objectives: According to drought type including meteorological, agricultural and hydrological, drought can start with a decrease in variables such as precipitation, soil moisture and runoff compared to the average values. Agricultural drought, which indicates a lack of soil moisture, will have important effects such as a decrease in crop yield. One of the most widely used drought monitoring methods is the use of standardized indices. The main aim of this study is to modify the standardized soil moisture index (SSI) by selecting the appropriate distribution fitted on soil moisture variable over various climate of Iran.
Materials and Methods: In this regard, daily measured data in 40 synoptic stations and monthly soil moisture data in the first (0-7 cm) and second (7-28 cm) layers from the ERA5 database during 1979-2020 have been used. In the second step, after collecting the required data, in order to evaluate the accuracy of the ERA5 database, the measured variables including precipitation, average temperature and potential evapotranspiration using the coefficient of determination (R2), mean bias error (MBE) and scatter index (SI) were compared with the ERA5 database. In the third step of the research, the best fitted distributions on the soil moisture variables of the first and second layer among 49 different distributions in EasyFit 5.5 software were identified by performing the Kolmogorov-Smirnov test at a significance level of 1 and 5 percent. Then, 12 SSI indices have been calculated for 40 studied stations in time scales of 1, 3, and 6 months. In the final step, the characteristics of drought including the number of drought events, frequency, duration and intensity of drought were calculated for all indices and compared with each other in different climates.
Results: Generally, based on the SI, the highest accuracy of ERA5 data is related to temperature, potential evapotranspiration and precipitation, respectively. The results of fitting distributions show the significant fitting of gamma distribution as the superior distribution in only 11 and 5% of the first and second layer soil moisture in different stations, respectively. The three superior distributions fitted on the soil moisture of the first layer are Lognormal, Beta, and Logistic distributions, and for the soil moisture in second layer, Logistic, Beta, and Normal distributions, respectively. The minimum and maximum frequency of drought occurred in Abadeh, Anar, Minab and Kerman stations equal to 7, 3, 4 and 2% and in Iranshahr, Bam, Zabol and Iranshahr stations equal to 18.4, 17.8 and 21.0 and 25.4 percent, respectively. The minimum and maximum duration of agricultural drought occurred in Sanandaj and Anar stations, equal to 18 and 64 months, respectively. The intensity of droughts from the index based on the gamma distribution to the index based on the superior distribution decreases from 1.53 to 1.44 in the first soil layer (severe to moderate drought) and from 1.91 to 1.65 in the second soil layer.
Conclusion: The change in the characteristics of agricultural drought based on the change in the distribution used in calculating the index is greater in drier climates than in wet climates and in the soil moisture of the second layer compared to the soil moisture of the first layer. So that in some cases it changes according to the type of distribution used in calculating the drought class index. In general, the results of the research indicate the necessity of examining and selecting the superior distribution instead of the gamma distribution in the calculation of the standardized agricultural drought index.

کلیدواژه‌ها [English]

  • Agricultural drought
  • Climates of Iran
  • Drought's characteristics
  • ERA5 database
  • Soil moisture
1.Varjani, S.J. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277-286.
2.Naeem, U., and Qazi, M.A. 2020. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environmental Science and Pollution Research. 27: 22. 27370-27382.
3.Hussain, I., Puschenreiter, M., Gerhard, S., Schöftner, P., Yousaf, S., Wang, A., Syed, J.H., and Reichenauer, T.G. 2018. Rhizoremediation of petroleum hydrocarbon- contaminated soils: improvement opportunities and field applications. Environ. Exp. Bot. 147: 202-219.
4.O’Brien, P.L., DeSutter, T.M., Casey, F.X., Wick, A.F., and Khan, E. 2017. Evaluation of soil function following remediation of petroleum hydrocarbons-a review of current remediation techniques. Current Pollution Reports. 3: 3. 192-205.
5.Kluk, D., and Steliga, T. 2016. Evaluation of toxicity changes in soil contaminated with nickel and petroleum-derived substances in phytoremediation processes. Nafta-Gaz. 4: 230-241.
6.Mench, M., Lepp, N., Bert, V., Schwitzguébel, J.P., Gawronski, S.W., Schröder, P., and Vangronsveld, J. 2010. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10: 6. 1039-1070.
7.Martins, C.D.C., Liduino, V.S., Oliveira, F.J.S., and Sérvulo, E.F.C. 2014. Phytoremediation of soil multi-contaminated with hydrocarbons and heavy metals using sunflowers. Int. J. Eng. Tech. IJET-IJENS. 5:14. 1-6.
8.Xie, W., Zhang, Y., Li, R., Yang, H., Wu, T., Zhao, L., and Lu, Z. 2017. The responses of two native plant species to soil petroleum contamination in the Yellow River Delta. Environ. Sci. Poll. Res. 24: 31. 24438-24446.
9.Liu, R., Jadeja, RN., Zhou, Q., and Liu, Z. 2012. Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environmental Engineering Science. 29: 6. 494-501.
10.Bento, R.A., Saggin-Júnior, O.J., Pitard, R.M., Straliotto, R., da Silva, E.M.R., Tavares, S.R.D.L., and Volpon, A.G.T. 2012. Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water, Air, and Soil Pollution. 223: 9. 5659-5671.
11.Hawrot-Paw, M., Ratomski, P., Mikiciuk, M., Staniewski, J.,Koniuszy, A., Ptak, P., and Golimowski, W. 2019. Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil. Environ. Sci. Poll. Res. 26: 33. 34594-34602.
12.Borowik, A., Wyszkowska, J., Gałązka, A., and Kucharski, J. 2019. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. Environ. Sci. Poll. Res. 26: 27. 27738-27751.
13.Guo, M., Gong, Z., Miao, R., Jia, C., Rookes, J., Cahill, D., and Zhuang, J. 2018. Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: bacterial community and functional gene expression mechanisms. Chemosphere 212: 15-23.
14.Lee, Y.Y., Seo, Y., Ha, M., Lee, J., Yang, H., and Cho, K.S. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environmental Research. 194: 110606.
15.Wei, Y., Wang, Y., Duan M., Han, J., and Li, G. 2019. Growth tolerance and remediation potential of six plants in
oil-polluted soil. J. Soils Sediments. 19: 3773-3785.
16.Shan, B.Q., Zhang, Y.T., Cao, Q.L., Kang, Z.Y., and Li, S.Y. 2014. Growth responses of six leguminous plants adaptable in Northern Shaanxi to petroleum contaminated soil. Huan jing ke xue = Huanjing kexue. 35: 3. 1125-1130.
17.Khashij, S., Karimi, B., and Makhdoumi, P. 2018. Phytoremediation with Festuca arundinacea: a mini review. International Journal of Health and Life Sciences. 4: 2. e86625.
18.Ganjegunte, G., Ulery, A., Niu, G., and Wu, Y. 2018. Treated urban wastewater irrigation effects on bioenergy sorghum biomass, quality, and soil salinity in an arid environment. L. Degrad. Dev. 29: 3. 534-542.
19.Bremner, J.M. 1982. Total nitrogen. Methods of soil analysis. Am. Soc. Agron. Mongrn. 10: 2. 594-624.
20.Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
21.Richards, L.A. (Ed.). 2012. Diagnosis and improvement of saline and alkali soils. Scientific Publishers.
22.Robertson, G.P., Coleman, D.C., Sollins, P., and Bledsoe, C.S. (Eds.). 1999. Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand.
23.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science. 37: 1. 29-38.
24.Ayers, R.S., and Westcot, D.W. 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper 29. Rev. 1. FAO, Rome.
25.Alizadeh, A. 2018. Soil, water, plant relationship. Emam Reza University Publication, Mashhad, Iran. 470p. (In Persian)
26.Anyasi, R.O., and Atagana, H.I. 2018. Profiling of plants at petroleum contaminated site for phytoremediation. International journal of phytoremediation. 20: 4. 352-361.
27.Adeniji, A.O., Okoh, O.O., and Okoh, A.I. 2017. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review. Journal of Chemistry. 2017: 1-14.
28.Matthew, M. 2009. A comparison study of gravimetric and ultraviolet fluorescence methods for the analysis of total petroleum hydro-carbons in surface water. (Doctoral dissertation, Northeastern University).
29.Ololade, I., Lajide, L., and Amoo, I. 2009. Spatial trends of petroleum hydrocarbons in water and sediments. Open Chemistry. 7: 1. 83-89.
30.Kamath, R., Rentz, J.A., Schnoor, J.L., and Alvarez, P.J.J. 2004. Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Studies in surface science and catalysis. 151: 447-478.
31.Asghar, H.N., Rafique, H.M., Zahir, Z.A., Khan, M.Y., Akhtar, M.J., Naveed, M., and Saleem, M. 2016. Petroleum hydrocarbons-contaminated soils: remediation approaches. Soil science: agricultural and environmental prospective. Springer. Cham. pp. 105-129.
32.Steliga, T., and Kluk, D. 2020. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety. 194: 110409.
33.Lorestni, B., Noori, R., and Kolahchi, N. 2016. Bioremediation of soil contaminated with light crude oil using Fabaceae family. Journal of Environmental Science and Technology. 18: 2. 101-108. (In Persian)
34.Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., and Chen, Q. 2019. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety. 170: 502-512.
35.Liu, W., Hou, J., Wang, Q., Yang, H., Luo, Y., and Christie, P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant and Soil. 389: 1. 109-119.
36.Jamrah, A., Al-Futaisi, A., Hassan, H. and Al-Oraimi, S. 2007. Petroleum contaminated soil in Oman: Evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete. Environmental monitoring and assessment. 124: 1. 331-341
37.Huang, L., Chen, D., Zhang, H., Song, Y., Chen, H., and Tang, M. 2019. Funneliformis mosseae enhances root development and Pb phytostabilization in Robinia pseudoacacia in Pb-contaminated soil. Frontiers in Microbiology. 2591.
38.Mendoza, R.E. 1998. Hydrocarbon leaching, microbial population, and plant growth in soil amended with petroleum. Bioremediation Journal. 1: 3. 223-231.
39.Shahriari, M., Savaghebi Firouzabadi, G., Minaei Tehrani, D., and Padidaran, M. 2006. The effect of mixed plants alfalfa (Medicago Sativa) and fescue (Festuca Arundinacea) on the phytoremediation of light crude oil in soil. Environmental sciences. 4: 13. 33-40. (In Persian)
40.Haritash, A.K., and Kaushik, C.P. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of hazardous materials. 169: 1-3. 1-15.
41.Kayikcioglu, H.H. 2012. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions. Journal of environmental management. 102: 108-114.
42.Ahmad, A. 2021. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth. Environmental Science and Pollution Research. pp. 1-10.
43.Ahmad, A., Sreedhar Reddy, S., and Rumana, G. 2019. Model for bioavailability and metal reduction from soil amended with petroleum wastewater by rye-grass L. International journal of phytoremediation. 21: 5. 471-478.
44.Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., and Ramsden, J.J. 2006. Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer Science & Business Media.
45.Prematuri, R., Mardatin, N.F., Irdiastuti, R., Turjaman, M., Wagatsuma, T. and Tawaraya, K. 2020. Petroleum hydrocarbons degradation in contaminated soil using the plants of the Aster family. Environmental Science and Pollution Research. 27: 4. 4460-4467.
46.Lim, M.W., Von Lau, E., and Poh, P.E. 2016. A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions. Marine pollution bulletin. 109: 1. 14-45.
47.Van Hecke, M.M., Treonis, A.M., and Kaufman, J.R. 2005. How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms?. Plant and soil. 275: 1. 101-109.
48.Zhang, X., Wang, Z., Liu, X., Hu, X., Liang, X., and Hu, Y. 2013. Degradation of diesel pollutants in Huangpu-Yangtze River estuary wetland using plant-microbe systems. International Biodeterioration and Biodegradation. 76: 71-75.
49.Newman, L.A., and Reynolds, C.M. 2004. Phytodegradation of organic compounds. Current opinion in Biotechnology. 15: 3. 225-230.
50.Mougin, C. 2002. Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatic Compounds, 22: 5. 1011-1043.
51.Eze, M.O., and George, S.C. 2020. Ethanol-blended petroleum fuels: implications of co-solvency for phytotechnologies. RSC Advances, 10: 11. 6473-6481.
52.Merkl, N., Schultze-Kraft, R., and Arias, M. 2005. Influence of fertilizer levels on phytoremediation of crude oil-contaminated soils with the tropical pasture grass Brachiaria brizantha (Hochst. ex a. rich.) stapf. International Journal of Phytoremediation. 7: 3. 217-230.
53.McIntosh, P., Schulthess, C.P., Kuzovkina, Y.A., and Guillard, K. 2017. Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. International journal of phytoremediation, 19: 8. 755-764.
54.Keller, J., Banks, M.K., and Schwab. A.P. 2008. Effect of soil depth on phytoremediation efficiency for petroleum contaminants. J. Environ. Sci. Health. Part A, Toxic/Hazard Subst. Environ. Eng. 43: 1. 1-9.
55.Hutchinson, S.L., Schwab, A.P., and Banks, M.K. 2001. Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. Journal of environmental quality. 30: 5. 1516-1522.
56.Hou, F.S.L., Milke, M.W., Leung, D.W.M., and MacPherson, D.J. 2001. Variations in phytoremediation performance with diesel-contaminated soil. Environmental technology. 22: 2. 215-222.
57.Van Epps, A. 2006. Phytoremediation of petroleum hydrocarbons. Environmental Protection Agency, US.
58.Lee, S.L., Hagwall, M., Delfino, J.J., and Rao, P.S.C. 1992. Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water. Environmental Science and Technology. 26: 2104-2110.