امکان‌سنجی پیش‌بینی میزان عملکرد سالانه جو دیم بر اساس شاخص‌های مختلف خشکسالی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

نویسنده مسئول، استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

سابقه و هدف: در اقلیم‌های خشک و نیمه‌خشک که کشت دیم از اهمیت و جایگاه بالایی برخوردار است لازم است به طور ویژه‌ای ضمن بررسی فاکتورهای مؤثر بر عملکرد محصولات دیم، پیش‌بینی آن نیز مورد توجه قرار گیرد. در این میان، توجه ویژه به گیاهان زراعی تحمل‌پذیر نظیر جو اجتناب‌ناپذیر است. تحقیق حاضر با هدف امکان‌سنجی پیش‌بینی میزان عملکرد سالانه جو دیم بر اساس چند شاخص خشکسالی در یک اقلیم نیمه‌خشک به انجام رسید.
مواد و روش‌ها: با محاسبه سه شاخص خشکسالی SPEI، EDDI و SPI برای چهار دوره رشد جو دیم شامل کاشت-سبزشدن، سبزشدن-پنجه‌زنی، پنجه‌زنی-ساقه‌دهی و ساقه‌دهی-گل‌دهی در ایستگاه سرارود کرمانشاه، ۱۲ سری زمانی از مقادیر این شاخص‌ها طی دوره آماری 2015-2000 استخراج گردید. جهت ارزیابی ارتباط کلی بین شاخص‌های خشکسالی و عملکرد سالانه جو دیم از جدول متقاطع استفاده شد و جهت مدل‌سازی میزان عملکرد سالانه جو دیم بر اساس شاخص‌های خشکسالی، در وهله اول از مدل رگرسیون چندگانه خطی مبتنی بر شناسایی بهترین زیرمجموعه و در مرحله تکمیلی از مدل رگرسیون مبتنی بر مؤلفه‌های اصلی (PCR) استفاده شد. فرایند مدل‌سازی رگرسیون خطی چندگانه با در نظر گرفتن دو رویکرد کلی شامل استفاده از هر شاخص خشکسالی بصورت واحد و استفاده تلفیقی از سه شاخص مختلف انجام شد.
یافته‌ها: بر اساس نتایج حاصل از جدول متقاطع، ارتباط مناسبی بین عملکرد سالانه جو دیم و شاخص‌های خشکسالی مشاهده شد و نتیجه-گیری شد که این پتانسیل وجود دارد که از شاخص‌های خشکسالی جهت پیش‌بینی عملکرد سالانه جو دیم استفاده شود. نتایج حاصل از بکارگیری هر شاخص خشکسالی بصورت واحد نشان داد که بالاترین ضریب تعیین بین عملکرد سالانه جو دیم با شاخص‌های خشکسالی با در نظر گرفتن SPEI (6/63 درصد) و کمترین مقدار آن با در نظر گرفتن EDDI (1/54 درصد) و برای شاخص SPI (4/62 درصد) در حد بینابین آنها حاصل آمد که این شاخص‌ها برای SPEI و SPI طی دوره‌های کاشت-سبزشدن و پنجه‌زنی-ساقه‌دهی و برای EDDI طی دوره‌های کاشت-سبزشدن و ساقه‌دهی-گل‌دهی در مدل حضور یافتند. نتایج حاصل از بکارگیری تلفیقی هر سه شاخص خشکسالی نشان داد که بهترین مدل رگرسیون چندگانه خطی با ضریب تعیین 7/78 درصد و ضریب تعیین تعدیل شده 2/69 درصد با حضور شاخص SPEI در دوره‌های پنجه‌زنی-ساقه‌دهی و ساقه‌دهی-گل‌دهی و همچنین شاخص EDDI در دوره‌های کاشت-سبزشدن و پنجه‌زنی-ساقه‌دهی حاصل آمد اما بالا بودن شاخص تورم واریانس (VIF) ضرورت بکارگیری مدل رگرسیونی مبتنی بر مؤلفه‌های اصلی (PCR) را آشکار ساخت. نتایج حاصل از بکارگیری مدل PCR جهت مدل‌سازی عملکرد سالانه جو دیم نشان داد که ضریب تعیین مدل در این حالت در مقایسه با مدل رگرسیون خطی چندگانه با افتی ناچیز به 2/78 درصد رسید اما ضریب تعیین تعدیل‌شده به 7/71 درصد بهبود یافت. با در نظر گرفتن مدل PCR بعنوان مدل نهایی پیش‌بینی عملکرد سالانه جو دیم و با بکارگیری روش اعتبارسنجی متقابل جهت سنجش قابلیت پیش‌بینی این مدل، مقدار دو شاخص R2 و RMSE به ترتیب برابر با 5/58 درصد و 3/572 کیلوگرم در هکتار (معادل با ۲۲ درصد میانگین عملکرد سالانه جو دیم) حاصل آمد.
نتیجه‌گیری: نتایج کلی این تحقیق نشان داد که بکارگیری شاخص‌های خشکسالی با ماهیت متفاوت می‌تواند سبب افزایش توجیه‌پذیری واریانس عملکرد سالانه جو دیم گردد. بر اساس نتایج کلی حاصل از این تحقیق، وقوع یا عدم وقوع خشکسالی در دوره سبزشدن-پنجه-زنی تأثیر قابل توجهی بر میزان عملکرد سالانه جو دیم ندارد و با توجه به آنکه دوره پنجه‌زنی-ساقه‌دهی نقش پررنگ‌تری در مدل‌ها داشت بعنوان بااهمیت‌ترین دوره مؤثر بر میزان عملکرد سالانه جو دیم شناسایی شد. لذا در سال‌هایی که خشکسالی در دوره پنجه‌زنی-ساقه‌دهی رخ دهد انتظار افت عملکرد سالانه بیشتری در مقایسه با وقوع خشکسالی در سایر دوره‌ها می‌توان داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Feasibility study of rainfed barley annual yield prediction based on different drought indices

نویسنده [English]

  • Younes Khoshkhoo
Corresponding Author, Assistant Prof., Dept. of Water Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
چکیده [English]

Background and Objectives: At the arid and semi-arid climates which the rainfed farming has a high degree of importance, it is essential to evaluate both the effective factors on the rainfed crop yield and its predicting as well. In this respect, it is unavoidable to have a special consideration for some tolerable crops such as barley. The aim of the current study was to assess the possibility of rainfed barley annual yield prediction using some drought indices at a semi-arid climate.
Materials and Methods: By calculating SPEI, EDDI and SPI drought indices for four growth stages of rainfed barley including sowing-emerge, emerge-tillering, tillering-stem and stem-flowering at the Sararoud-Kermanshah station, a number of 12 time series of these indices were extracted during 2000-2015 period. The cross-tabulation was used to evaluating the overall relationship between drought indices and rainfed barley annual yield and to modeling rainfed barley annual yield based on drought indices, the best subset-based multiple linear regression model and Principal Component Regression (PCR) were applied at two different stages. The modelling procedure performed in two overall cases including considering a unique drought index and considering a combination of three different drought indices cases.
Results: the results of cross-tabulation technique showed an appropriate relationship between rainfed barley annual yield and drought indices. Therefore, a potential is available to use drought indices to predict rainfed barley annual yield. Based on the results of considering a unique drought index case, the highest (63.6%) and lowest (54.1%) values of coefficient of determination between rainfed barley annual yield and drought indices were for SPEI and EDDI indices, respectively and a value between them (62.4%) for SPI. The values of these indices were appeared at the model during the sowing-emerge and tillering-stem stages for SPEI and SPI and sowing-emerge and stem-flowering stages for EDDI. By considering the combination of three different drought indices case, the results revealed that the best multiple linear regression model is obtained by presence of SPEI (during tillering-stem and stem-flowering stages) and EDDI (during sowing-emerge and tillering-stem stages) indices in the model with a good coefficient of determination (R2= 78.7% and R2adj= 69.2%). However, the high value of Variance Inflation Factor (VIF) revealed that it is necessary to solve this issue by considering the Principal Component Regression (PCR) model. By applying PCR model to predict rainfed barley annual yield, the coefficient of determination for the PCR (78.2%) showed a negligible decrease compared to the multiple regression model. However, the adjusted coefficient of determination properly improved to 71.7%. By considering the PCR model as the final model of predicting rainfed barley annual yield, the cross-validation results of this model led to obtaining R2=58.5% and RMSE=572.3kg/hec (equal to 22% of the mean of annual yield).
Conclusion: The overall results of this research showed that applying different drought indices could lead to increasing the explained variance of rainfed barley annual yield. The overall results of this research showed that the occurrence of drought during the emerge-tillering stage does not have a considerable impact on the rainfed barley annual yield. With respect to the higher role of the tillering-stem stage in the regression models, this stage was detected as the most important effective period on the rainfed barley annual yield. Therefore, among different growth stages, occurring drought in the tillering-stem period is expected to lead to a lesser amount of annual yield.

کلیدواژه‌ها [English]

  • cross validation
  • PCR model
  • SPEI index
  • EDDI index
  • Sararoud station
1.Chaves, M.S., Martinelli, J.A., Wesp-Guterres, C., Graichen, F.A.S., Brammer, S.P., Scagliusi, S.M., and Chaves, A.L.S. 2013. The importance for food security of maintaining rust resistance in wheat. Food security. 5: 2. 157-176.
2.FAO (Food and Agriculture Organization). 2010. The State of Food Insecurity in the World: Addressing food insecurity in protracted crises. 62p.
3.Alasti, O., Zeinali, E., Soltani, A., and Torabi, B. 2020. Estimation of yield gap and the potential of rainfed barley production increase in Iran. Journal of Crop Production. 13: 3. 41-60.
4.Sacks, W.J., and Kucharik, C.J. 2011. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology. 151: 7. 882-894.
5.Dehghani Sargazi, H., Bazrafshan, O., and Zamni, H. 2021. Investigation of the effect of meteorological-agricultural drought on rainfed wheat yield in Iran using SPEI. Nivar. 45: 114-115. 15-26. (In Persian)
6.Chmielewski, F.M., Müller, A., and Bruns, E. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and Forest Meteorology. 121: 69-78.
7.Siebert, S., and Ewert, F. 2012.Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agricultural and Forest Meteorology. 152: 44-57.
8.Mosaedi, A., Moghaddam, S.M., and Sough, M.G. 2016. Modeling rain-fed wheat and barley based on meteorological features and drought indices. Iranian Journal of Water and Soil. 29: 3. 730-749. (In Persian)
9.Chen, T., Xia, G., Liu, T., Chen, W., and Chi, D. 2016. Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability. 8: 10. 1069-1082.
10.Yao, N., Li, Y., Lei, T., and Peng, L. 2018. Drought evolution, severityand trends in mainland China over1961-2013. Science of the Total Environment. 616: 73-89.
11.Pena-Gallardo, M., Vicente-Serrano, S.M., Domínguez-Castro, F., Quiring, S., Svoboda, M., Beguería, S., and Hannaford, J. 2018. Effectiveness of drought indices in identifying impacts on major crops across the USA. Climate Research. 75: 3. 221-240.
12.Lobell, D.B., Schlenker, W., andCosta-Roberts, J. 2011. Climate trends and global crop production since 1980. Science. 333: 616-620.
13.Páscoa, P., Gouveia, C.M., Russo, A.C., Bojariu, R., Vicente-Serrano, S.M.,and Trigo, R.M. 2018. Vegetation vulnerability to drought on southeastern Europe. Hydrology and Earth System Sciences Discussions. 38: 1-29.
14.Kattelus, M., Salmivaara, A., Mellin, I., Varis, O., and Kummu, M. 2016.An evaluation of the Standardized Precipitation Index for assessing inter-annual rice yield variability in the Ganges-Brahmaputra-Meghna region. International Journal of Climatology.
36: 2210-2222.
15.Naderianfar, M., and Heydari Gharae, E. 2021. Evaluation of drought impacts on irrigated and rainfed wheat yields in Bojnourd region. Journal of Crop Science Research in Arid Regions.3: 1. 163-176. (In Persian)
16.Nabizadeh Balkhanlou, A., Hajarizadeh, Z., and Khedmatzadeh, A. 2020. Assessment Drought Crop Moisture Index (CMI) Performance Dried wheat Case Study (Lake Urmia Simineh River Basin). Geographical Engineering of Territory. 4: 1. 205-192. (In Persian)
17.Samadianfard, S., Panahi, S., and Nazemi, A.H. 2022. Modeling the yield of rainfed wheat, barley and alfalfa products using support vector regression and genetic programming. Water and Soil Science. 32: 2. 97-111. (In Persian)
18.Karim, M.R., and Rahman, M.A. 2015. Drought risk management for increased cereal production in Asian least developed countries. Weather and Climate Extremes. 7: 24-35.
19.Jongrungklanga, N., Toomsana, B., Vorasoota, N., Jogloya, S., Booteb, K.J., Hoogenboomc, G., and Patanothaia, A. 2013. Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crops Research. 144: 34-42.
20.Lloyd-Hughes, B., and Saunders, M.A. 2002. A drought climatology for Europe. International Journal of Climatology.
22: 13. 1571-1592.
21.Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climatology. 23: 7. 1696-1718.
22.Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M., and Hain, C. 2016. The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. Journal of Hydrometeorology. 17: 6. 1745-1761.
23.Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper FAO56, 300p.
24.Heydari Tasheh Kaboud, Sh., and Khoshkhoo, Y. 2019. Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. Journal of Applied researches in Geographical Sciences.19: 53. 157-176. (In Persian)
25.Vicente-Serrano, S.M., Cabello, D., Tomás-Burguera, M., Martín-Hernández, N., Beguería, S., Azorin-Molina, C., and El Kenawy, A. 2015. Drought variability and land degradation in semiarid regions: Assessment using remote sensing data and drought indices (1982-2011). Remote Sensing. 7: 4. 4391-4423.
26.Shiukhy Soqanloo, S., and Nadi, M. 2021. Performance evaluation and modification of SPI in drought monitoring of arid and semi arid regions of Iran. Journal of Water and Soil Resources Conservation. 10: 2. 17-30. (In Persian)
27.Khoshkhoo, Y. Esmaeili, S., and Abdollahi, M. 2018. Estimating daily and monthly air temperature parameters at Kurdistan province using MODIS sensor images. Journal of Soil Water Research. 49: 2. 413-423. (In Persian)