اندازه‌گیری عمق برف و بررسی مؤلفه‌ی دما در ارتباط با ویژگی برف

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استاد گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 دانشجوی کارشناسی‌ارشد گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشجوی کارشناسی‌ارشد گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

10.22069/jwsc.2022.19570.3502

چکیده

سابقه و هدف: با توجه به نقش مهم برف در چرخه‌ی آب زمین، بررسی خصوصیات برف به‌ویژه در مناطق کوهستانی، ضروری به نظر می‌رسد. فن‌آوری سنجش‌ازدور می‌تواند جهت مطالعه مناطق بزرگ با وضوح مکانی و زمانی بالا استفاده شود. سنجنده‌های راداری با روزنه مجازی با باندهای فرکانسی بزرگ و طول‌موج‌های کوچک و قابلیت نفوذپذیری زیاد در این دست از مطالعات ترجیح داده می‌شوند. فن تداخل‌سنجی راداری باوجود اینکه حجم اطلاعات حاصل از تحلیل اینترفرومتری بالا است، یک ابزار قدرتمند در محاسبه عمق برف بوده و مجموعه داده سنتینل 1 به دلیل دسترسی آسان در مطالعات تداخل‌سنجی ترجیح داده می‌شوند. از طرفی امروزه ارتباط LST با ویژگی‌های برف مورد توجه بسیاری از محققین می‌باشد. در مطالعه‌ی حاضر از فن تداخل‌سنجی راداری جهت برآورد عمق برف و همچنین از سامانه ابری Google Earth Engine در برآورد خصوصیات برفی ازجمله عمق و سطح پوشش برفی استفاده‌ شده است. همچنین ارتباط بین مؤلفه دما و سطح و عمق برف نیز مورد بررسی قرار گرفته است.
مواد و روش: حوضه لیقوان با وسعتی حدود 185 کیلومترمربع در شمال غرب کشور و در استان آذربایجان شرقی واقع ‌شده است. در این مطالعه برای استخراج عمق برف از ۴ تصویر راداری سنتینل ۱ مربوط به بازه زمانی آذر تا اسفند ۱۳۹۸ و یک تصویر راداری مربوط به شهریور ۱۳۹۸ با فرمت SLC جهت پیاده‌سازی تداخل‌سنجی راداری در نرم‌افزار SARSCAPE استفاده ‌شده است. جهت افزایش دقت بخشی از کار از سامانه Google Earth Engine استفاده ‌شده است. به‌همین منظور برای استخراج سطح پوشش برفی و مساحت آن از محصول روزانه NDSI سنجنده مودیس و محصول ماهانه NDSI-DEPTH جهت استخراج میانگین عمق برف مربوط به هریک از ماه‌های برفی در سامانه ابری Earth Engine Google استفاده ‌شد. همچنین از محصول روزانه MOD11A1 سنجنده مودیس جهت تهیه نقشه دما برای بررسی رابطه دما با ویژگی برف استفاده شد.
یافته‌ها: بررسی نقشه سطوح برفی حضور برف در تمام ماه‌های بازه زمانی موردمطالعه، در منطقه را نشان داده و بیشترین تمرکز سطوح برفی در مناطق مرتفع مشاهده شد. با توجه به خروجی‌های سامانه Earth Engine Google بیشترین و کم‌ترین مقدار سطح پوشش برف به ترتیب مربوط به دی‌ماه با ۱۸۰ کیلومترمربع و آذرماه با مقدار ۸۳ کیلومترمربع محاسبه‌شده است. متوسط بیش‎ترین و کم‎ترین مقدار عمق برف به ترتیب مربوط به ماه‌های بهمن و آذر بوده که با بهره‌گیری از فن تداخل‌سنجی راداری مقادیر ۳۲ و ۹ سانتی‌متر و با استفاده محصول SnowDepth-inst در سامانه Earth Engine Google مقادیر ۲۴ و ۴ سانتی‌متر را نشان داده است. همچنین بررسی‌های حاصل از نقشه‌های دما مقادیر کمینه و بیشینه‌ 14- و 5- درجه سانتی‌گراد را نشان داد. مقادیر مربوط به تحلیل رگرسیونی بین سری زمانی دمای سطح زمین و سطح پوشش برف به ترتیب 003/0 و 020/3- برای پارامترهای SIG وz به ‌دست آمد. مقدار متغیر R2 نیز در ارتباط با بررسی همبستگی عمق برف و دما نیز 0/47 به‌ دست آمد.
نتیجه‌گیری: نتایج این پژوهش بیانگر قابلیت هر دو روش فن تداخل سنجی راداری و کد نویسی در سامانه گوگل ارث انجین در محاسبه‌ی عمق برف می‌باشد. نقشه‌ها و مقادیر عمق برف به دست آمده می‌تواند ابزار مناسب جهت مدیریت منابع آبی منطقه برای مصارف گوناگون باشد. همچنین بررسی نتایج ضرایب رگرسیونی رابطه معنی داری بین متغیر LST و عمق وسطح پوشش برف نشان داد. بطوری‌که رابطه معکوس بین دو مؤلفه LST و پوشش برفی (SC) و LST و عمق برف و همچنین رابطه مستقیم بین کاهش دما و LST را نشان داد.
کلمات کلیدی: تداخل‌سنجی راداری، سنتینل 1، عمق سنجی برف، حوضه آبخیز لیقوان، Google earth engine.

کلیدواژه‌ها


عنوان مقاله [English]

Measuring snow depth and investigating the temperature component about snow characteristics

نویسندگان [English]

  • sayyad Asghari Saraskanrood 1
  • Shiva Safari 2
  • Elham Mollanouri 3
1 Corresponding Author, Professor, Dept. of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
2 M.Sc. Student, Dept. of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
3 M.Sc. Student, Dept. of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Background and objective: Considering the important role of snow in the groundwater cycle, the study of snow characteristics, especially in mountainous regions, seems necessary. Remote sensing technology can be used to study large areas with high spatial and temporal resolution. Synthetic aperture radar sensors with large frequency bands, small wavelengths, and high permeability are preferred in this type of study. Differential Radar interferometry technique Although the volume of information derived from interferometric analysis is high is a powerful tool in calculating the depth of snow, and the Sentinel data set is preferred due to easy access in interferometric studies. On the other hand, the relationship between LST with snow characteristics is considered to be a lot of researchers. In this study, the radar interferometry technique for estimating the depth of snow, as well as the Google Earth Engine, cloud system, has been used to estimate the snow characteristics, including the depth and surface of the snow cover. Also, the relationship between the component of temperature and snow surface and depth is examined.
Materials and methods: The Liqvan watershed with an area of 185 kilometers is located in the northwest of the country and East Azerbaijan province. In this study, for extraction of the depth of snows from 4 radar images of Sentinel 1 related to the time interval of December until March 1398 and a radar image associated with September 1398 in SLC format to implement radar interferometry in SARSCAPE software Used. To increase accuracy part of the work was used from the Google Earth Engine system. For this purpose, to extract the surface of the snow cover and its area of the NDSI daily product of the Modis sensor and the monthly NDSI- DEPTH product was used for extraction of the average depth of snow of each snow month in the Google Earth Engine Cloud System. Also, the Daily Product of Mod11A1 Modis Sensor was used to prepare a temperature map to examine the relationship between temperature and snow characteristics.
Results: Investigating the map of snow surfaces in the area of all months of the study period in the region showed the highest concentration of snow surfaces in high regions. Due to the outputs of the Google Earth Engine system, the highest and lowest snow cover level is calculated by January with 180 kilometers and December with a value of 83 km. The average and the lowest amount of the depth of snow is related to the February and December months, which utilizes the radar interferometry technique of 32 and 9 centimeters and uses the Snow depth- Inst product in the Google Earth Engine system 24 and 4 centimeters Has shown. The values for regression analysis were obtained between the time series of the surface temperature and the surface of the snow cover, respectively, 0/003 and -3/020 for the parameters of Sig and Z. The R2 variable was also obtained 0/47 about the correlation of the depth of snow and lst.
Conclusion: The results of this study indicate the ability of both radar interferometry technique and coding in the Google Earth Engine in calculating the depth of snow.
Maps and measures of the depth of snow can be an appropriate tool for managing water resources in the region for various uses. Also, the results of regression coefficients showed a significant relationship between the LST variable and the depth of snow and snow cover. So that the inverse relationship between the two components of LST and the snow cover (SC) and LST, and the depth of snow, as well as the direct relationship between reduced temperature and LST, showed.

کلیدواژه‌ها [English]

  • Radar interference
  • Sentinel 1
  • Snow depth measurement
  • Liquan catchment
  • Google earth engine
1.Aalami, M., and Hosseinzadeh, H. 2014. Modeling Rainfall – Runoff Process in Lighvan Chai Basin Using Conditional Threshold Temperature Neuron. Journal of Water and Soil Science, 20: 2. 97-110. (In Persian)
2.Alhossaini Almodaresi, A., Hatami, J., and Sarkargar, A. 2016. Calculating the physical properties of snow, using differential radar interferometry and TerraSAR-X and MODIS images. Journal of RS & GIS for Natural Resources.
7: 2. 59-75. (In Persian)
3.Asghari, S., and Emami, H. 2019. Monitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image. Journal of Applied researches in Geographical Sciences. 19: 53. 195-215. (In Persian)
4.Asghari, A., and Modirzadeh, R. 2020. Estimation of changes in snow depth in Ardabil and Sarein city using Sentinel1 satellite data with Radar interferometry method. Journal of Iran-Water Resources Research. 16: 1. 394-407. (In Persian)
5.Evans, J., and Kruse, F. 2014. Determination of snow depth using elevation differences determined by interferometric SAR (InSAR). Reseach gate. 1-5. DOI: 10.1109/ IGARSS. 2014. 6946586.
6.Geetha Priya, M., and Krishnaveni, D. 2019. An Approach to Measure Snow Depth of Winter Accumulation at Basin Scale Using Satellite Data. International Journal of Computer and Information Engineering. 13: 2. 70-74.
7.Goldstein, M., and Werner, L. 1998. Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25: 21. 4035-4038.
8.Halabian, A., and Solhi, S. 2020.Snow-cover and Land Surface Temprature investigation, related to the Elevation as a Topographic Factor in the Central Alborz Mountain. Journal of Quantitative geomorphological research. 9: 2. 227-249. (In Persian)
9.Hall, D.K., Riggs, G.A., and Salomonson, V. 1995. Development of methods for mapping global snow cover using moderate resolution imaging Spectroradiometer data. Journal of Remote Sensing of Environment, 54: 127-140.
10.Hui, L., Zou, W., Guangjun, H., and Wang, M. 2017. Estimating Snow Depth and Snow Water Equivalence Using Repeat-Pass Interferometric SAR in the Northern Piedmont Region of the Tianshan Mountains, Journal of Sensors, https://doi.org/10.1155/2017/8739598.
11.Keikhosravi Kinay, M., and Masoudian, A. 2017. Exploring the Role of Land Surface Temperature on Distribution of Snow Coverage in Iran by Remote Sensing Data. Journal of Geographyand Development, 15: 49. 189-204.(In Persian)
12.Maghsoudi, Y., and Mahdavi, S. 2015. Fundamentals of Radar Remote Sensing, Khajeh Tasir al-Din Tusi University
of Technology, First Edition, 290p.(In Persian)
13.Manickam, S., and Barros, A. 2020. Parsing Synthetic Aperture Radar Measurements of Snow in Complex Terrain: Scaling Behaviour and Sensitivity to Snow Wetness and Landcover. Journal of remote sensing, 12: 483. 1-31.
14.McNally, A., Rui, H., and Loeser, C. 2021. FLDAS: Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System. https:// developers.google.com/earth.
15.Meyer, F. 2019. Sentinel-1 InSAR processing using the Sentinel-1 toolbox, Alaska satellite facility. Journal of Adapted from coursework developed,4: 1. 1-18.
16.Raziei, T. 2017. Identification of the temperature regimes of Iran using multivariate methods. Iranian Journal of Geophysics, 11: 2. 15-35. (In Persian)
17.Roostaei, S., Mokhtari, D., and Ashrafi Fini, Z. 2018. Identification and monitoring of domain instability by differential intermetal processingIn the Taleghan watershed. Quantitative geomorphological researches, 7: 3. 18-30. (In Persian)
18.Seifi, H., and Feizizadeh, B. 2019. Application of interferometric method and radar remote sensing images to estimate the depth of snow and water discharge, Case Study: (Yamchie Basin). Iran-Water Resources Research, 15: 1. 341-355. (In Persian)
19.Seifi, H., and Gorbani, I. 2019. Estimating snow cover trends using Object-Oriented Methods and images received from OLI and TIRS sensors (Case Study: Sahand Mountain). scientific - Research Quarterly of Geographical Data (SEPEHR), 28: 109. 77-91.(In Persian)
20.Shojaei Anari, M., Khabazi, M., and Karimi, S. 2020. Analysis of changes in snow reservoirs for planning and management of dehydration (Case Study: Sarab Halilroud Area inKerman Province). Regional Planning, 9: 36. 167-184. (In Persian)
21.Thiebault, K., and Young, S. 2020. Snow cover change and its relationship with land surface temperature and vegetation in northeastern North America from 2000 to 2017, International Journal of Remote Sensing, 41: 21. 8453-8474.
22.Tsai, Y., Dietz, A., Oppelt, N., and Kuenzer, C. 2019. Remote sensing of snow cover using Spaceborne SAR: A review. Remote Sensing 11: 1456. 1-44.
23.Vahidi, M., Jafarzadeh, A., Fakheri Fard, A., Sadeghi, H., Rezaei Moghadam, M., and Valizadeh Kamran, Kh. 2015. Investigation of land cover and land use changes in Liqvan catchment area in East Azarbaijan province. Journal of Geographical Space, Volume. 15: 49. 100-75. (In Persian)
24.Varade, D., Maurya, A.K., Dikshit, O., Singh, G., and Manickam, S. 2019. Snow depth in Dhundi: An estimate based on weighted bias corrected differential phase observations of dual polarimetric bi-temporal Sentinel-1 data. International Journal of Remote Sensing, 41: 8. 3031-3053.
25.Yan, D., Huang, C., Ma, N., and Zhang Y. 2020. Improved Landsat-Based Water and Snow Indices for Extracting Lake and Snow Cover/Glacier in the Tibetan Plateau. Journal of water,12: 1339. 1-16.
26.Zhang, Q., and Ban, Y. 2011. "Evaluation of urban expansion and its impact on surface temperature in Beijing, China", Joint Urban Remote Sensing Event Munich, Germany,11: 13. 357-360.