مدل‌سازی رقومی جزء شن خاک با داده‌های ابرطیفی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار حفاظت و فرسایش خاک، گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

2 استاد فیزیک، حفاظت و فرسایش خاک، گروه علوم و مهندسی خاک، دانشگاه تربیت مدرس، ایران.

10.22069/jwsc.2022.19584.3505

چکیده

سابقه و هدف: جزء شن از مهمترین اجزای بافت خاک بوده که برای عملیات مدل‌سازی زیست‌محیطی و پهنه‌بندی رقومی خاک، باید مورد توجه واقع شود. از طرفی، بدلیل تغییرپذیری مکانی این جزء؛ تشخیص، پهنه‌بندی و پایش آن، در مقیاس‌های وسیع، با استفاده از شیوه‌های سنتی رایج و عملیات تجزیه و تحلیل معمول آزمایشگاهی، بسیار وقت‌گیر و پر هزینه است. از نقطه‌نظر دیگر؛ دورسنجی هوایی و فضایی در قیاس با طیف‌سنجی میدانی و آزمایشگاهی دارای نواقصی همچون اثرات جوی، آثار ساختاری و ترکیبی طیفی، پایین‌تر بودن تفکیک طیفی و مکانی، اختلالات هندسی و نیز فرآیند اختلاط طیفی می‌باشد. لذا برای غلبه بر این نواقص و برای مطالعۀ عوامل دارای تغییرپذیری مکانی، نیازمند فن‌آوری مناسبی می‌باشد. با ظهور طیف‌سنجی بازتابی پراکنشی آزمایشگاهی که از لرزش‌های بنیادین، فرعی و ترکیبی گروه-های عاملی(FGs) بهره می‌برد، آن، بعنوان ابزاری نویدبخش در مطالعۀ اجزای خاک، معرفی شد. طی تحقیق حاضر، از طیف‌سنجی بازتابی مجاورتی، برای مدل‌سازی ابرطیفی اجزای شن در قسمت‌هایی از استان مازندران استفاده شد.
مواد و روش‌ها: جمعاً 128 نمونه از عمق 20 سانتیمتری سطح خاک، بر اساس روش نمونه‌برداری SRS و با کمک اطلاعات جانبی همچون: زمین‌شناسی، کاربری‌اراضی، نقشۀ راه‌ها، و خاک‌شناسی استان، جمع‌آوری شد. در ابتدا، مجموع نمونه‌ها به دو قسمت برای عملیات واسنجی و اعتبارسنجی، تقسیم شد. با بهره‌گیری از تحلیل‌ابرطیفی، رگرسیون‌چندمتغیرۀ PLSR و بر اساس تکنیک LOOCV و عملیات پیش‌پردازش طیفی همچون: میانگین‌گیری، هموارسازی و مشتق اول طیفی بر اساس الگوریتم ساویتسکی-گولای، مدل تخمینی بر مبنای شاخص‌های تحلیلی همچون همبستگی دوطرفۀ پیرسون (R)، ضریب تبیین (R2)، میانگین مربعات خطای اعتبارسنجی (RMSE)، و نیز شاخص‌های اعتبارسنجی RPD و RPIQ، ایجاد و بررسی شد.
یافته‌ها: تحقیق حاضر بر مبنای مدل‌سازی ابرطیفی شن منطقه در زیرمجموعۀ واسنجی مشتمل بر 96 و نیز زیرمجموعۀ اعتبارسنجی مشمتل بر 32 نمونه، نشان داد، 2 و 4 LV اول از مجموع 7 LV، بهترین تخمین در خاک‌های منطقۀ مورد مطالعه را نشان می‌دهد. از آنجاییکه این تعداد عامل منتخب، قادرند بیش از 60% واریانس متغیر شن و نیز 98% واریانس داده‌های طیفی را متمرکز کنند؛ نتیجتاً فرآیند واسنجی مدل تخمینی، بر اساس چهار فاکتور اول و شیوۀ LOOCV سراسری انجام شد. بهترین مدل ابرطیفی تخمین‌گر اجزای شن با این خصوصیات واسنجی شد، Rc: 76/0، R2c: 57/0، RMSEc: 77/9 و Sec: 82/9. همچنین مقادیر ضریب R بین متغیر شن و باندهای طیفی مؤثر بدین ترتیب محاسبه شد، 390: 46/0، 510-540: 53/0، 680-690: 55/0، 950-970: 67/0، 1100: 70/0، 1410: 76/0، 1860-1900: 76/0، 2180-2220: 77/0؛ که باندهای طیفی منتخب دارای بهترین و بیشترین تأثیر در فرآیند مدل‌سازی ابرطیفی شن در خاک‌های استان بوده‌اند. بعلاوه، بارزترین دامنه‌های طیفی در فرآیند مدل‌سازی بدین تریتب بوده است: UV-390، Vis-440-540، NIR-740-990، SWIR-1430-1890، 1930، 2190-2240، 2330-2440 نانومتر که این نتایج در تطابق با برخی مطالعات انجام گرفته، بوده است. کیفیت مدل ابرطیفی واسنجی‌شدۀ‌شن با استفاده از آزمون‌هایی همچون هتلینگ، لوریج تعدیلی و واریانس باقیمانده‌ها نیز مورد بررسی قرار گرفت. مشخصات عملیات صحت‌سنجی بدین ترتیب بوده است: Rp: 83/0، R2p: 68/0، RMSEp: 68/8، SEp: 72/8 و انحراف: 26/1.
نتیجه‌گیری: نتایج، حاکی از تحلیل مناسب ابرطیفی در برآورد مقادیر شن منطقه بوده است. بدین ترتیب بر مبنای LV2، RPDc: 51/1، RPIQc: 44/2؛ RPDp: 78/1، RPIQp: 45/2 و نیز بر اساس LV4، RPDc: 54/1، RPIQc: 48/2، RPDp: 75/1 و RPIQp: 41/2، محاسبه گردید. مقادیر RPIQ بالاتر از 2، بیانگر توانایی مناسب و کیفیت‌خوب مدل در برآورد مقادیر شن استان مازندران با استفاده از داده‌های‌ابرطیفی بوده است. نتایج تحقیق حاضر می‌تواند نقطۀ آغازی در پهنه‌بندی دقیق‌تر جزء شن بافت خاک، بر مبنای سکوهای دورسنجی باشد. همچنین، با مشخص شدن طول‌موج‌های کلیدی در فرآیند مدلینگ؛ فرآیند آپ‌اسکیلینگ(بیش‌مقیاس‌سازی) و نیز آماده-سازی سنجنده‌های ابرطیفی هوایی و فضایی، می‌تواند بهبود یافته که منجر به دقیق‌تر شدن مطالعات ابرطیفی اجزای بافت نیز خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Digital modeling of soil sand constituent using hyperspectral data

نویسندگان [English]

  • Majid Danesh 1
  • Hosseinali Bahrami 2
1 Corresponding Author, Assistant Prof., Dept. of Soil Science and Engineering, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
2 Professor, Dept. of Soil Science and Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
چکیده [English]

Background&Objective:Sand fraction is one of the most important soil textural segments which should be highlighted for environmental modeling operations and digital soil mapping projects. Identification, mapping and monitoring of sand content over wide scales using traditional procedures is time-consuming and costly. Also spaceborne and airborne spectroscopy(remote sensing) have some defects compared to the laboratory and field spectroscopy. Hence, to overpower the imperfection of RS technology in relation to investigating the factors with spatial changeability, an apt technology is required. With the advent of Lab Diffuse reflectance Spectroscopy(LDRS) which exploits the fundamental vibration, overtones and combination of functional groups, that became a promising tool related. The present research intends to hyperspectral modeling of sand fraction utilizing the proximal soil sensing tech in some parts of Mazandaran province.
Materials and Methods:In accord with supplementary data layers(geology,pedology,landuse,etc.) and stratified randomized sampling method, eventually, 128 samples from 20cm of soil surface of Mazandaran province (scattered parts), were gathered. First of all, sample-set subdivided into two subsets: calibration and validation. Afterwards, using the hyperspectral analyses, multivariate regression analysis-PLSR method with the leave-one-out-cross-validation technique and some preprocessing algorithms such as: spectral averaging,smoothing and 1stderivative(Savitzky-Golay-derivation algorithm), the definitive calibration model with two&four latent vectors according to indices such as R,R2,RMSE,RPD and RPIQ were made.
Results&Discussion:During the present research based on the sand hyperspectral modeling in the calibration subset containing 96 samples as well as the validation subset composing of 32 standalone samples, it has been showed the first two and four LVs out of the seven LVs can provide the best estimate of the soils of the study province. Consequently, the calibration process of sand hyperspectral model was done based on the first four LVs and the full LOOCV procedure. Because these number of LVs are able to concentrate the info-variance of sand variable more than 60% and likewise, the info-variance of spectral variables more than of 98%. The best calibrated hyperspectral model predicting sand components resulted with these specs: Rc=0.76,R2C=0.57,RMSEc= 9.77 and SEc of about 9.82. The correlation coefficients(R) of sand contents with the effective spectral domains were calculated as: UV-390nm=0.46, Vis-510to540nm about 0.53, 680to690 about 0.55, NIR- 950to970 about 0.67 and 1100nm=0.70, SWIR-1410 nm=0.76, 1860to1900 about 0.76, 2180to2220 about 0.77; which the specified spectral bands(spectral ranges) with the maximum of R contents indicating their highly impact and influence as the independent predictors on the sand parameter hyperspectral modeling processes at the studied soils of Mazandaran province. Furthermore, the most influential spectral domains involved in the modeling process of sand particles were determined as follows: UV-390nm,Vis-440-540nm,NIR-740-990nm,SWIR-1430-1890,1930,2190-2240,2330-2440nm, which these results were in agreement with others. The quality of calibrated sand hyperspectral model via assays such as Hotelling, adjusted leverage and residual variances was also confirmed. The accuracy assessment specs were as: Rp=0.83,R2p=0.68,RMSEp=8.68,SEp=8.72 and bias=-1.26.
Conclusion:Results indicate the apt hyperspectral analyses to estimate the sand based on LV=2: RPDc=1.51,RPIQc=2.44,RPDp=1.78 and RPIQp=2.45, additionally for LV=4:RPDc=1.54,RPIQc=2.48,RPDp=1.75 and RPIQp=2.41 have been gained. On the basis of the RPIQ values which were more than 2, it can be concluded the models are able to estimate the sand contents of Mazandaran soils satisfactorily and showing the acceptable quality of the predicting models utilizing the hyperspectral data. Our results can be the starting point to accurate mapping of sand constituents of soil texture using the RS platforms. It is noteworthy, the characterization of key wavelengths in the hyperspectral modeling of sand components, the upscaling operation as well as constructing the new airborne/satellite hyperspectral sensors can be bettered using the principle wavebands affecting the hyperspectral process so that providing the more precise hyperspectral studying of soil texture constituents using the aerial or space platforms.

کلیدواژه‌ها [English]

  • Digital mapping
  • Hyperspectral modeling
  • PLSR
  • sand
  • Spectroscopy
1.Adeline, K.R.M., Gomez, C., Gorretta, N., and Roger, J.M. 2017. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma. 288: 143-153.
2.Askari, M.S., Cui, J., O’Rourke, S.M., and Holden, N.M. 2015. Evaluation of soil structural quality using VIS–NIR spectra. Soil and Tillage Research.146: 108-117.
3.Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M., and McBratney, A. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, Trends Anal. Chem. 29: 9. 1073-1081.
4.Camargo, O.A., Moniz, A.C., Jorge, J.A., and Valadares, J.M. 2009. Methods of Chemical, Mineralogical and Physical Analysis of Soils Used in the Pedology Section (Technical Bulletin n.106), Instituto Agronômico (IAC), Campinas. 77p.
5.Casa, R., Castaldi, F., Pascucci, S., Palombo, A., and Pignatti, S. 2013. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma. 197: 17-26.
6.Chabrillat, S., Ben-Dor, E., Rossel, R.A.V., and Demattê, J.A.M. 2013. Quantitative soil spectroscopy. Appl. Environ. Soil Sci. 3: 1-3.
7.Chang, C.W., and Laird, D.A. 2002. Near-infrared reflectance spectroscopy analysis of soil C and N, Soil Science. 167: 110-116.
8.Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G.,and Scarciglia, F. 2013. Studying the relationship between water-induced soil erosion and soil organic matterusing Vis–NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena. 110: 44-58.
9.Curcio, D., Ciraolo, G., D’Asaro, F., and Minacapilli, M. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences. 19: 494-503.
10.Danesh, M., Bahrami, H.A., Darvishzadeh, R., and Noroozi, A.A. 2016. Investigating clay contents using laboratory diffuse reflectance spectroscopy. Iranian Journal of RS & GIS. 8: 1. 71-94. (In Persian)
11.Demattê, J.A.M., and Terra, F.S. 2014. Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations, Geoderma. 217-218: 190-200.
12.Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., and Scholten, T. 2020. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 12: 14. 22-34.
13.Ge, Y., Thomasson, J.A., and Morgan, C.L.S. 2014. Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination. Geoderma. 213: 57-63.
14.Gomez, C., Lagacherie, P., and Coulouma, G. 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma. 148: 141-148.
15.Gomez, C., Le Bissonnais, Y., Annabi, M., Bahri, H., and Raclot, D. 2013. Laboratory Vis–NIR spectroscopy as an alternative method for estimatingthe soil aggregate stability indexesof Mediterranean soils. Geoderma.
209-210: 86-97.
16.Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., and Linderman, M. 2019. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma.337: 32-41.
17.Hewson, R.D., Cudahy, T.J., Jones, M., and Thomas, M. 2012. Investigations into soil composition and texture using infrared spectroscopy. Appl. Environ. Soil Sci. 12p.
18.Kagan, T.P., Shachak, M., Zaady, E., and Karnieli, A. 2014. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma. 230-231: 171-184.
19.Lagacherie, P., Baret, F., Feret, J.B., Netto, J.M., and Robbez-Masson, J.M. 2008. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment.
112: 825-835.
20.Li, D., Durand, M., and Margulis, S.A. 2012. Potential for hydrologic characterization ofdeep mountain snowpack via passive microwave remote sensing in the KernRiver basin, Sierra Nevada, USA. Remote Sens. Environ. 125: 34-48.
21.Lu, P., Wang, L., Niu, Z., Li, L., and Zhang, W. 2013. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery, Journal of Geochemical Exploration. 132: 26-33.
22.McDowell, M.L., Bruland, G.L., Deenik, J.L., Grunwald, S., and Knox, N.M. 2012, Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy, Geoderma. 189-190: 312-320.
23.Mulder, V.L., de Bruin, S., Schaepman, M.E., and Mayr, T.R. 2011. The use of remote sensing in soil and terrain mapping - A review. Geoderma. 162: 1-19.
24.Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.A., Abbasi, M., Dematte, J.A.M., Arthur, E., and Panagos, P. 2018. Towards prediction of soil erodibility, SOM and CaCO 3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma. 314: 102-112.
25.Padarian, J., Minasny, B., and McBratney, A.B. 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional. 16: e00198.
26.Peng, L., Cheng, H., Wang, L.J., and Zhu, D. 2020. Comparisons the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratoryVis-NIR spectroscopy data. Canadian J. of Soil Science. 101: 1. 33-44.
27.Qi, F., Zhang, R., Liu, X., Niu, Y., Zhang, H., Li, H., Li, J., Wang, B., and Zhang, G. 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research.184: 45-51.
28.Rawlins, B.G., Kemp, S.J., and Milodowski, A.E. 2011. Relationships between particle size distribution and VNIR reflectance spectra are weaker for soils formed from bedrock compared to transported parent materials. Geoderma. 166: 84-91.
29.Sawut, M., Ghulam, A., Tiyip, T., Zhang, Y.J., Ding, J.L., Zhang, F., and Maimaitiyiming, M. 2014. Estimating soil sand content using thermal infrared spectra in arid lands. International Journal of Applied Earth Observation and Geoinformation. 33: 203-210.
30.Stevens, A., Nocita, M., Toth, G., Montanarella, L., and van-Wesemael, B. 2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoSONE. 8: 6. e66409. http://dx.doi.org/ 10.1371/ journal.pone.0066409.
31.Summers, D., Lewis, M., Ostendorf, B., and Chittleborough, D. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators. 11: 123-131.
32.Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., and Gholizadeh, A. 2014, Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS), Geoderma. 232-234: 208-218.
33.Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J, and Skjemstad, J.O. 2006. Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131: 59-75.
34.Xian-Li, X., Xian-Zhang, P., and Bo, S. 2012. Visible and Near-Infrared Diffuse Reflectance Spectroscopy for Prediction of Soil Properties near a Copper Smelter. Pedosphere. 22: 3. 351-366.
35.Xu, D., Ma, W., Chen, S., Jiang, Q., He, K., and Shi, Z. 2018a. Assessment of important soil properties related to Chinese Soil Taxonomy based onvis–NIR reflectance spectroscopy. Computers and Electronics in Agriculture. 144: 1-8.
36.Xu, S., Zhao, Y., Wang, M., and Shi, X. 2018b. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma. 310: 29-43.
37.Zhao, L., Hong, H., Fang, Q., Algeo, T.J., Wang, C., Li, M., and Yin, K. 2020. Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting Quaternary soil deposits. Catena. 184: 104239.