مطالعه آزمایشگاهی اثر برداشت مصالح پایین دست پایه پل بر نیمرخ آبشستگی با رویکرد بهینه یابی فاصله

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، ایران

چکیده

سابقه و هدف: دست‌درازی انسان‌ها در رودخانه‌ها از جمله ساخت سازه (پل) و یا تغییر شکل بستر، بر جریان طبیعی آن اثر گذاشته که منجر به پدیده آب‌شستگی و ایجاد گودال‌هایی در بستر طبیعی رودخانه‌ها می‌شود. این حفره‌ها پس از تغییر شکل بستر در اثر رسوب‌گذاری و فرسایش می‌تواند تا فواصل طولانی در راستای طولی رودخانه گسترش پیدا کرده و آسیب‌های مختلفی بر سازه‌ها و تأسیسات موجود در بستر رودخانه‌ها هم‌چون پایه‌های پل ایجاد نماید. پل‌ها از مهمترین سازه‌های دسترسی بوده که خرابی آنها اثرات جبران‌ناپذیر اجتماعی دارد، لذا اثر حفره‌های برداشت مصالح بر پایه‌های پل اهمیت زیادی می‌تواند داشته باشد. پیشروی حفره‌های برداشت مصالح در طول بستر رودخانه و حرکت آن به سمت پایه‌های پل و همراه شدن با پدیده آبشستگی و جریان‌های آشفته شکل گرفته در اطراف پایه‌ها، باعث ایجاد اثر مخرب فرسایش و واژگونی پایه می‌شود. از این‌رو در این پژوهش به مطالعه آزمایشگاهی اثر برداشت مصالح در پایین‌دست پایه پل استوانه‌ای بر نیمرخ‌های آبشستگی اطراف آن با تغییرات عمق و فاصله حفره برداشت مصالح از پایه پرداخته می‌شود.
مواد و روش‌ها: برای این منظور در مقیاس آزمایشگاهی و در شرایط آب زلال و جریان دائمی، تغییرات نیمرخ حفره برداشت‌شده و میزان اثر عمق حفره و فاصله آن از پایه بر نیمرخ آبشستگی اطراف پایه پل، با برداشت حفره‌هایی با 8/0 ، 6/1 H/D= (نسبت عمق حفره به قطر پایه) و با 10 ، 20 ، 30I/D= (نسبت فاصله حفره از پایه به قطر پایه) در پایین‌دست پایه در بستر رسوبی با عمق 1/0 متر ارزیابی گردید.
یافته‌ها: نتایج مشاهدات آزمایشگاهی نشان داد، در حالت بدون حفره برداشت مصالح، کمترین میزان بیشینه عمق آبشستگی مربوط به آزمایش با عدد فرود 26/0 به میزان 9 میلی‌متر به‌دست آمد؛ درحالی‌که بیشترین مقدار بیشینه عمق آبشستگی مربوط به آزمایش با عدد فرود 46/0 به میزان 60 میلی‌متر بود. در مقایسه با حالت بدون حفره در عدد فرود 43/0، کمترین میزان افزایش بیشینه عمق آبشستگی در آزمایش با برداشت حفره با 8/0H/D= و در 20I/D= و به مقدار 8 درصد بوده است. درحالی‌که بیشترین میزان افزایش بیشینه عمق آبشستگی در آزمایش با برداشت حفره با 6/1H/D= و 10I/D= به مقدار 26 درصد بوده است. به‌منظور یافتن فاصله بهینه برای برداشت مصالح پایین‌دست، آزمایش‌های با 30I/D=، مقادیر بیشینه عمق آبشستگی برابر با حالت بدون برداشت مصالح را نشان می‌دهد. لذا با افزایش فاصله از پایه از I/D برابر با 10 به 20 و سپس 30، افزایش بیشینه عمق آبشستگی نسبت به حالت بدون حفره از 26 درصد به 15 درصد و سپس به صفر درصد کاهش یافت.
نتیجه‌گیری: با مشاهده کلی نتایج می‌توان دریافت برداشت مصالح از بستر کانال در پایین‌دست پایه، بر میزان عمق آبشستگی تأثیر گذاشته و مقدار آن افزایش پیدا کرد و با افزایش عمق حفره برداشت‌شده از بستر و نزدیک‌تر کردن فاصله آن به پایه، بر میزان عمق آبشستگی اطراف پایه افزوده شد. همچنین برای پیش‌بینی میزان بیشینه عمق آبشستگی، رابطه‌هایی در حالت بدون حفره برداشت و نیز برای حالت با حفره برداشت بر مبنای تحلیل رگرسیون با استفاده از داده‌های حاصل پیشنهاد گردیده است. دقت این روابط با شاخص-های آماری بیان و دامنه کاربرد آن نیز ذکر گردیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study of the Effect of Mining Materials Downstream of Bridge Pier on Scour Profile with optimizing Distance Approach

نویسندگان [English]

  • Amin Koohsari
  • Mehdi Hamidi
Hydraulic Structures. Faculty of Civil Engineering. Babol Noshirvani University of Technology. Iran
چکیده [English]

Background and objectives: Human encroachment in rivers, such as the construction of a structure (bridge) or deformation of the bed, has affected its natural flow, which leads to the phenomenon of scouring and the creation of holes in the natural bed river. After deformation of the bed due to sedimentation and erosion, these holes can move in the longitudinal direction of the river and cause various damages to the structures and facilities in the riverbed as well as the bridge pier. Bridges are one of the most important access structures whose failure has irreparable social effects, so the effect of mining material holes on the bridge piers can be very important. The extension of mining material holes along the riverbed and its movement towards the bridge piers and accompanied by the scouring phenomenon and turbulent flows formed around the piers causes the destructive effect of erosion and overturning of the pier. Therefore, in this study, the effect of mining material downstream of the cylindrical bridge pier on the surrounding scour profiles is investigated with changes in the depth and distance of the mining material hole from the pier .
Materials and Methods: For this purpose, on an experimental model and in clear water conditions and constant flow, changes in the profile of the hole and the effect of the depth of the hole and its distance from the pier to the scour profile around the bridge pier were evaluated, by mining holes with H/D= 0.8, 1.6 (ratio of hole depth to pier diameter) and with I/D= 10, 20, 30 (ratio of hole distance from pier to pier diameter) downstream in sediment bed with depth 0.1 meters.
Results: The results of experimental observations showed that in the case without mining hole, the lowest maximum scour depth related to the experiment was obtained with a Froude number of 0.26 at 9 mm; While the highest maximum scour depth was related to the experiment with a Froude number of 0.46 of 60 mm. Compared to the case without a mining hole at the Froude number of 0.43, the lowest maximum increase in scour depth in the hole harvesting experiment was with H/D=0.8 and at I/D=20 by 8%. While the highest increase in maximum scour depth in the experiment with hole removal was 26% with H/D=1.6 and I/D= 10. In order to find the optimal distance for mining materials downstream, experiments with I/D=30 show the maximum values of scour depth equal to the case without mining material holes. Therefore, by increasing the distance from the pier I/D=10, 20, and then 30, the maximum increase in scour depth compared to the case without a mining hole decreased from 26% to 15% and then to zero%.
Conclusion: By observing the general results, it is possible to comprehend that mining material from the channel bed downstream, affects the amount of scour depth and increases it, and by increasing the mining hole depth and reducing its distance to the pier, the scour depth around the pier increased. Also, in order to predict the maximum scour depth, relationships in the case without mining hole and also for the case with it have been proposed using the obtained data based on regression analysis. The accuracy and also the scope of application of these relationships are mentioned with statistical indicators.

کلیدواژه‌ها [English]

  • Mining Material
  • Turbulent Flow
  • Scour depth
  • Cylindrical Bridge Pier
  • Longitudinal Profile of the Hole
1.Ali, K.M.M., and Lim, S.Y. 1986. Local scour caused by submerged wall jets. Proceedings of the Institution of Civil Engineers. 81: 4. 607-645.
2.Daneshfaraz, R., Chabokpour, J., and Dasineh, M. 2019. The experimental investigation of the maximum depth and length of the created pit holes due to the bed material removal under subcritical flow condition. Journal of Water and Soil Conservation. 26: 1. 111-130. (In Persian)
3.Dasineh, M. 2017. Laboratory review of the transfer of pits made under the influence of riverbed. Master's Thesis. Maragheh University. Civil Engineering Department. (In Persian)
4.Haghnazar, H., Hashemzadeh, B.A., Amini, R., and Saneie, M. 2019. Experimental study on appropriate location of river material mining pits regarding extraction and utilization. Journal of Mining and Environment.10: 1. 163-175.
5.Haghnazar, H., Sangsefidi, Y., Mehraein, M., and Tavakol, D.H. 2020. Evaluation of infilling and replenishment of river sand mining pits. Environmental Earth Sciences. 79: 362.
6.Lade, A.D., Deshpande, V., Kumar, B., and Oliveto. G. 2019. On the morphodynamic alterations around bridge piers under the influence of instream mining. Water. 11: 8. 1676.
7.Lade, A.D., Deshpande, V., and Kumar, B. 2019. Study of flow turbulence around a circular bridge pier in sand mined stream channel. Proceedings of the Institution of Civil Engineers - Water Management. 173: 5. 217-237.
8.Lee, S.O., Seungh, K., and Sturm, T.W. 2004. Comparison of laboratory and field measurements of bridge pier scour. 2nd International Conference on Scour and Erosion, Singapore.
9.Li, J., Qi, M., and Jin, Y. 2013. Experimental and numerical investigation of riverbed evolution in post-damaged conditions. Proceeding of 2013 IAHR World Congress, China.
10.Majedi, M.A., Daneshfaraz, R., and Valizadeh, S. 2019. Experimental study of river sand and gravel mining on scouring pattern around pier group. Journal of Hydraulics. 143: 3. 1611-1633. (In Persian)
11.Majedi, M.A., Daneshfaraz, R., Abraham, J., and Valizadeh, S. 2021. Effects of hydraulic characteristics, sedimentary parameters, and mining of bed material on scour depth of bridge pier groups. Journal of Performance of Constructed Facilities. 35: 2. 04020148.
12.Masjedi, A., Bajestan, M.S., and Kazemi, H. 2010. Effects of bridge pier position in a 180 degree flume bend on scour hole depth. Journal of Applied Sciences. 10: 8. 670-675.
13.Mehdizade, S., Ghorghi, M., and Shadi, A. 2020. Assessment of effective indexes for optimal site selection of river material mining, case study: Talvar River in Kurdistan province. Journal of Watershed Engineering and Management. 12: 1. 153-165. (In Persian)
14.Melville, B.W. 1997. Pier and abutment scour: integrated approach. Journal of Hydraulic Engineering. 123: 2. 125-136.
15.Melville, B.W., and Chiew, Y.M. 1999. Time scale for local scour at bridgepier. Journal of Hydraulic Engineering. 125: 1. 59-65.
16.Raudkivi, A.J., and Ettema, Robert. 1983. Clear water scour at cylindrical piers. Journal of Hydraulic Engineering. 109: 3. 338-350.
17.Saneie, M., Ghafouri , M.A., Davoudi, M.H., and Amiri, E. 2011. Effects of gravel and sand mining location on scour bridge pier. 4th Iran Water Resources Management Conference, Amirkabir University of Technology, Tehran, Iran. (In Persian)
18.Shen, H.W. 1969. Mechanics of local scour: supplement, methods of reducing scour. Colorado State University, Engineering Research Center Fort Collins Co. United States 80523. 39.