مطالعه عددی اثر موانع دشت سیلابی بر جریان ناشی از شکست سد به روش MPS

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، همدان، ایران

2 دانشگاه بوعلی سینا – دانشکده کشاورزی– گروه مهندسی آب

3 دانشگاه فردوسی مشهد- گروه علوم و مهندسی آب

چکیده

سابقه و هدف: سیلابدشت ها سرزمین هایی نسبتا هموار در مجاورت رودخانه ها با کاربری مسکونی، صنعتی یا کشاورزی می باشند. شکست ناگهانی سدهای بزرگ، موجب شکل گیری و پیشروی امواج مخرب سیلاب در پائین دست می گردد. پیشروی سیل روی دشت های سیلابی تحت اثر تغییرات توپوگرافی و موانع درون جریان نظیر پل ها صورت می گیرد. این امواج، در بازه کوچکی از رودخانه و روی دشت سیلابی به ترتیب به صورت یک و دو بعدی انتشار می یابند. در شبیه سازی های هیدرودینامیکی، خصوصیات دو بعدی جریان ناشی از شکست سد روی دشت سیلابی، به ندرت مورد بررسی قرار گرفته است. بنابراین، اثر تلفیقی موانع دشت سیلابی، تنگ شدگی و موانع بستر بر خصوصیات جریان ناشی از شکست سد تعیین می گردد.
مواد و روش‌ها: در این پژوهش، از روش لاگرانژی ذرات متحرک نیمه ضمنی (MPS) برای مطالعه عددی خصوصیات جریان ناشی از شکست سد روی دشت سیلابی استفاده شد. از جمله مزایای این روش، تراکم ناپذیری، ذره محوری، بهره گیری از مدل های توانمند گرادیان و لاپلاسین در تصحیحات سرعت - فشار بدون نیاز به توابع هموارسازی پیچیده می باشد. بدین ترتیب، اثر رقوم اولیه آب در مخزن، شکل موانع، تبدیل های جانبی و نیز موانع کف بر پارامترهای هیدرولیکی، در 15 حالت گوناگون مورد مطالعه قرارگرفت. موانع دشت سیلابی به شکل های استوانه، مکعب، لوزی و نامتقارن و موانع بستر به شکل مکعبی می باشند. ابتدا، تحلیل حساسیت نتایج عددی نسبت به سه قطر ذره 01/0، 015/0 و 02/0 متر صورت گرفت. در نهایت، قطر ذره 015/0 متر به عنوان اندازه ذرات آب در مدل در نظر گرفته شد. شبیه سازی ها با بیش از 280000 ذره کروی و با دقت مرتبه دوم مکانی و زمانی صورت گرفت.
یافته‌ها: دقت نتایج عددی با بهره گیری از خطای نرمال NRMSE و مقایسه با نتایج آزمایشگاهی پیشین تعیین گردید. نتایج نشان داد که تخلیه مخزن در حل های عددی سریعتر از نتایج آزمایشگاهی رخ می دهد. بنابراین، مدل MPS مقادیر ارتفاع نیمرخ سطح آزاد و سرعت پیشروی جریان را به ترتیب کم و بیش برآورد می نماید. برخورد جریان به موانع دشت سیلابی، موجب بالاروی و شکل گیری جریان سه بعدی در محل استقرار موانع، تبدیل های جانبی و موانع کف می گردد. همچنین، شکل موانع عاملی مؤثر بر تغییر شکل های نیمرخ سطح آزاد، مؤلفه افقی سرعت سطحی و نیروهای مقاومت پسآی وارد بر جریان می باشد.
نتیجه گیری: مقادیر خطای نرمال نشان داد که دقت روش MPS در محاسبه تغییر شکل های نیمرخ طولی سطح آزاد بین 88 تا 91 درصد متغیر می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Study of the Effect of Floodplain Obstacles on the Flow Induced by Dam Break using MPS method

نویسندگان [English]

  • Alireza Khoshkonesh 1
  • Saeed Gohari 2
  • Hossein Banejad 3
1 Department of water science and engineering, Faculty of agriculture, Bu-Ali Sina university, Hamedan, IRAN
2
3 Department of water science and engineering, Faculty of Agriculture,University of Mashhad, Mashhad, Iran
چکیده [English]

Background and Objectives: The floodplains are relatively flat lands in the vicinity of the rivers with the residential, industrial or agricultural usage. The sudden breakdown of large dams leads to the formation and propagation of devastating flood waves over the downstream. The flood propagation occurs over the floodplains due to the topographic variations and in-stream obstacles such as bridges. These waves are developed one and two dimensional over a small reach of the river and floodplains, respectively. In the hydrodynamic simulations, two-dimensional characteristics of the dam-break flow over the floodplains have been studied scarcely. Therefore, the combined effects of the floodplains obstacles, constriction and the bottom barriers are calculated over the dam-break flow characteristics.
Materials and Methods: In the present study, the moving particle semi-implicit (MPS) method was used to the numerical study of the dam-break flow characteristics over the floodplain. From advantages of this method are including the incompressibility, the particle-based and using of powerful models of gradients and Laplacian in velocity-pressure corrections without any complex smoothing functions. Hence, the effects of the reservoir initial water level, the shapes of the obstacles - lateral transitions as well as the bottom barriers on the hydraulic parameters were studied in 15 various cases. The floodplain obstacles are cylindrical, cubic, rhomboidal and asymmetric, and the bottom barriers are cubic. At first, the sensitivity analysis was carried out on three particles diameters including the 0.01, 0.015 and 0.20 m. Finally, the diameter of the particles equal to 0.015m was adopted as the water particles size in the model. The simulations carried out through more than 280000 spherical particles, with the second order spatial and temporal accuracy.
Results: The precision of the numerical results was calculated using the NRMSE normal error through the comparison with the previous experimental one. The results demonstrated that evacuation of the reservoir occurs in numerical solutions faster than the experimental. Therefore, the MPS model under and overestimates the values of the free-surface profile height and the flow propagation velocity, respectively. The impact of flow to the floodplain obstacles leads to the rising up and the formation of a three-dimensional flow at the obstacles place, the lateral constrictions and the bottom obstacles. Further, the shape of the obstacles represents a crucial factor in the free surface profile deformations, the horizontal component of the surface velocity, and the drag resistance forces applied to the flow.
Conclusion: Normal error values showed that the accuracy of the MPS method in the calculation of the free surface longitudinal profile deformations are variable between 88 and 91 percent.

کلیدواژه‌ها [English]

  • Floodplain
  • Moving particles semi-implicit
  • Instantaneous dam break
  • Obstacles
  • Lateral transitions
1.Ataie-Ashtiani, B., and Farhadi, L. 2006. A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res. 38: 4. 241-256.
2.Chen, R., Cai, Q., Zhang, P., Li, Y., Guo, K., Tian, W., Qiu, S., and Su, G.H. 2019. Three-dimensional numerical simulation of the HECLA-4 transient MCCI experiment by improved MPS method. Nucl. Eng. Des. 347: 95-107.
3.Jafari Nodushan, E., Hosseini, Kh., Mousavi, S.F., Shakibaeinia, A., and Farzin, S. 2015. The simulation of the dam-break flow by weakly compressible moving particle semi-implicit method. Modares Civil Eng. J. 15: 3. 25-36. (In Persian)
4.Khayyer, A., Naoki, T., Yuma, Sh., and Gotoh, H. 2019. Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Appl. Ocean Res. 82: 397-414. 
5.Kocaman, S., and Ozmen-Cagatay, H. 2015. Investigation of dam-break induced shock waves impact on a vertical wall.
J. Hydrol. 525: 1-12.
6.Kocaman, S., and Ozmen-Cagatay, H. 2012. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol.433: 145-153.
7.Koshizuka, S., Hillman, M., Chen, J.S., Roth, M.J., Reddy, B.D., Ortiz, M., and Kirchdoerfer, T. 2016. Moving Particle Semi-implicit (MPS) Method - Application to Free Surface Flow. Bulletin for the International Association for Computational Mechanics. United Kingdom.
8.Koshizuka, S., and Oka, Y. 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123: 3. 421-434.
9.Mohrig, D. 2004. Conservation of Mass and Momentum: sedimentary Geology. MIT OCW.
10.Ozmen-Cagatay, H., and Kocaman, S. 2011. Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Eng. Appl. Comput. Fluid Mech. 5: 4. 541-552.
11.Ozmen-Cagatay, H., Kocaman, S., and Guzel, H. 2014. Investigation ofdam-break flood waves in a dry channel with a hump. J. Hydro-Environ. Res.8: 3. 304-315.
12.Prometech. 2016. Particleworkstheory manual, Particleworks software documentation. Prometech, Inc.
13.Shakibaeinia, A., and Jin, Y.C. 2011. A mesh-free particle model for simulation of mobile-bed dam break. Adv. Water Resour. 34: 6. 794-807.
14.Sheybanifard, H., Zounemat Kermani, M., Baraniand, Gh.A., and Memarzadeh, R. 2018. Sensitivity analysis of the initial distance between particles in the smoothed particle hydrodynamics method in simulation of dam break.J. Water Soil Cons. 25: 4.153-169.(In Persian)
15.Soares-Frazão, S., Canelas, R., Cao, Z., et al. 2012 Dam-break flows over mobile beds: experiments and benchmark tests for numerical models. J. Hydraul Res. 50: 4. 364-375.
16.Soares-Frazão, S., Noël, B., and Zech, Y. 2004. Experiments of dam-break flow in the presence of obstacles. River Flow. Pp: 911-918.
17.Soares-Frazão, S., and Zech, Y. 2008. Dam-break flow through an idealised city. J. Hydraul. Res. 46: 5. 648-658.
18.Soares-Frazão, S., and Zech, Y. 2007. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res. 45: 27-36.
19.Sun, X., Sun, M., Takabatake, K., Pain, C., and Sakai, M. 2019. Numerical simulation of free surface fluid flows through porous media by using the explicit MPS method. Tranp porous media. 127: 1. 7-33.
20.Vischer, D., and Hager, W.H.1998. Dam Hydraulics, John Wiley, Chichester, United Kingdom, 316p.
21.Zech Y., and Soares-Frazão, S. 2007. Dam-break flow experiments and real-case data. A database from the European IMPACT research. J. Hydraul. Res.45: 5-7.
22.Zhang, T., Koshizuka, S., Xuan, P., Li, J., and Gong, C. 2018. Enhancement of stabilization of MPS to arbitrary geometries with a generic wall boundary condition. Comput Fluids. 0: 1-25.
23.Zhang, Y., and Van, D. 2019. MPS-FEM coupled method for fluid-structure interaction in 3D dam-break flows. Int. J. Comput. Methods. 15: 3. 1-16.