تابع انتقالی به منظور برآورد رطوبت خاک به کمک شاخص‌های پوشش گیاهی، دمای سطح خاک و شاخص نرمال شده رطوبت

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2 دانشگاه شهید چمران اهواز

3 مربی گروه علوم و مهندسی خاک دانشگاه شهید چمران اهواز

چکیده

سابقه و هدف: رطوبت خاک یکی از متغیرهایی است که با کنترل فرایند تبخیر و تعرق بر چرخه‌ی تبادل آب و حرارت بین زمین و اتمسفر تأثیر می‌گذارد. مقدار این رطوبت برای چرخه‌های هیدرولوژیکی، بیولوژیکی و بیوشیمیایی نیز حائز اهمیت می‌باشد. به کمک اطلاعات رطوبت خاک در بازه‌های زمانی منظم می‌توان درجه‌ی پیشرفت خشکسالی را در مناطق با آّب و هوای خشک تعیین کرد. همچنین پایش مستمر رطوبت خاک مناطق کشاورزی، به برنامه‌ریزی آبیاری محصولات به شکلی مؤثر کمک می‌کند. از رطوبت خاک همچنین برای شناسایی مناطق آتش‌خیز جنگل‌ها استفاده می‌شود. بنابراین پایش‌رطوبت خاک در هر منطقه و در مقاطع زمانی مختلف امری مهم می‌باشد. با توجه به عواملی مانند عدم یکنواختی در ویژگی‌های فیزیکی خاک، توپوگرافی، پوشش زمین، تبخیر و تعرق و میزان بارش، رطوبت خاک به عنوان عاملی متغیر در بازه‌های مکانی و زمانی شناخته می‌شود. بنابراین استفاده از روش‌های سنتی تعیین رطوبت خاک (مانند روش وزنی و میله‌ی نوترون) برای درک رفتار مکانی و زمانی این متغیر در سطوح وسیع مناسب نمی‌باشد. برای رفع این مشکل در دو دهه‌ی گذشته تکنولوژی سنجش از دور (به خصوص در حوزه‌ی مرئی/مادون قرمز نزدیک و حرارتی) به طور گسترده برای تخمین غیرمستقیم رطوبت خاک مورد استفاده قرار گرفته است. هدف از انجام این پژوهش، برآورد رطوبت خاک سطحی با استفاده از شاخص‌های نرمال شدۀ رطوبت (NDMI)، پوشش گیاهی نرمال شده(NDVI) و دمای سطح زمین (LST) بوده است.
مواد و روش‌ها: بدین منظور تصاویر ماهواره لندست 8 همزمان با نمونه‌برداری زمینی تهیه شدند. نمونه‌ها به آزمایشگاه منتقل و رطوبت خاک نمونه‌ها (تعداد 45 نمونه) به روش وزنی اندازه گیری شد سپس با استفاده از نرم افزارهای تخصصی ArcGIS شاخص‌های مورد نظر برآورد شد و مقادیر این شاخص‌ها برای اجرای رگرسیون آماری به نرم افزار SPSS منتقل و آنالیزهای آماری بین شاخص‌های نرمال شدۀ رطوبت (NDMI)، پوشش گیاهی نرمال شده(NDVI) و دمای سطح زمین (LST) و رطوبت خاک اندازه گیری انجام شد. سپس تابع انتقالی برآورد رطوبت خاک به روش رگرسیون خطی چندگانه بدست آمد. این پژوهش در منطقه دهدز از توابع شهرستان ایذه استان خوزستان انجام شد.
یافته‌ها: نتایج نشان داد بین مقادیر رطوبت خاک سطحی با شاخص‌های (NDMI) ، (NDVI) و (LST) همبستگی (78%) وجود دارد. همچنین نتایج صحت سنجی تابع انتقالی برآورد رطوبت خاک نیز نشان داد که این تابع با ضریب جرم باقی مانده (CRM) 001/0- قادر به پیش بینی رطوبت خاک سطحی است، این مقدار اندک این شاخص آماری، نشان دهنده دقت زیاد مدل پیشنهادی برای برآورد رطوبت خاک سطحی می‌باشد.
نتیجه‌گیری: نتیجه این پژوهش در قالب توابع انتقالی و نقشه رطوبتی خاک ارائه شده است. نقشه رطوبت خاک شبیه‌سازی شده به وسیلۀ این مدل قادر است 78 درصد تغییرات رطوبت خاک را در منطقه پیش‌بینی کند.

کلیدواژه‌ها


عنوان مقاله [English]

Pedotransfer Function (PTF) for Estimation Soil moisture using NDVI, land surface temperature (LST) and normalized moisture (NDMI) indices

نویسندگان [English]

  • Farshid Hosseini Chamani 1
  • Ahmad Farrokhian Firouzi 2
  • Hadi Amerykhah 3
1 Msc. Student, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2
3 Instructor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Background and Objectives: Available soil moisture of the land surface is one the key variables in controlling of the cycle of heat and water exchange between the earth and the atmosphere that manage this process with evapotranspiration of the surface. The amount of moisture is important for hydrological, biological and biochemical cycles, too. With Soil moisture data at regular time intervals, we can determine the degree of drought improvement in regions with dry climates. Also, continuous monitoring of soil moisture in agricultural areas can help us to efficiently crops irrigate. Soil moisture is also used to identify forest fire areas. Therefore, monitoring of soil moisture is important in any regions and different time periods. According to factors such as lack of uniformity in the physical characteristics of the soil, topography, land cover, evapotranspiration and precipitation and etc. Soil moisture is known as a variable parameter in a spatial and temporal domain. Therefore, the use of conventional and traditional methods of soil moisture (such as gravimetric and neutron probe) is not appropriate to understanding the spatial and temporal behavior of this parameter in large scales. To resolve this problem in past two decades, remote sensing technology (especially in visible/infrared spectrum) widely used to estimate of soil moisture indirectly. The objective of this study was to estimate surface soil moisture using Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) indices.
Materials and Methods: For this purpose, Landsat 8 satellite imagery was downloaded at the same time as ground sampling. The samples were transferred to the laboratory and soil moisture was calculated by weighted method. Then, using the specialized software such as ArcGIS, the indices were estimated and the values of these indicators were transferred to SPSS software for statistical regression. Statistical analyzes the studied indices and soil moisture content was measured. In this study, a PTF were obtained to predict soil moisture condition using LST and NDVI and NDMI derived from Landsat 8 data. Multiple linear regression method was used to derive the PTF. Soil moisture and soil organic matter were measured in the study area. After derivation of the pedotransfer function, the accuracy of the derived PTF was evaluated. This research was carried out in the city of Dehzad from Izeh Country, Khuzestan province.
Results: Comparison between measured and predicted soil moisture values indicated that the PTF had a good prediction (R2=0.78) and Coefficient of Residual Mass (CRM) also showed that the model gave good performance (CRM=0.001). Furthermoreو a soil moisture map was obtained for the study area. The result indicated which Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) indices can be used to predict soil surface moisture content successfully.
Conclusion: The result of this research is presented by a PTF and in the form of soil moisture map. The soil moisture map simulated by this model can predict 78% of soil moisture variation in the region.

کلیدواژه‌ها [English]

  • Soil moisture
  • pedotransfer functions
  • NDVI
  • LST
  • NDMI
1.Baghdadi, N., Aubert, M., Cerdan, O., Franchisteguy, L., Viel, C., Martin, E., Zribi, M., and Desprats, J.F. 2007. Operational mapping of soil moisture using synthetic aperture radar data: application to the Touch Basin (France). Sensors .7: 10. 2458-2483.
2.Carlson, T., Gillies, R., and Perry,E. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews. 9: 1-2. 161-173.
3.Cibula, W.G., Zetka, E.F., and Rickman, D.L. 1992. Response of thematic mapper bands to -plant water stress. Inter. J. Rem. Sens. 13: 10. 1869-1880. ‏
4.Engman, E.T. 1985. Partial Area Hydrology and Remote Sensing. J. Hydrol. 81: 3-4. 211-251.
5.Homaee, M., and Farrokhian Firouzi, A. 2008. Deriving point and parametric pedotransfer functions of some gypsiferous soils. Austr. J. Soil Res. 46: 3. 219-227.
6.Krapez, J.C., Olioso, A., and Coudert, B. 2009. Comparison of three methods based on the Temperature-NDVI diagram for soil moisture characterization. P 1-12,In: M.U. Neale Christopher and A., Maltese (eds), Remote Sensing for Agriculture, Ecosystems and Hydrology XI, Proc. of SPIE Vol. 7472, 74720Y, Berlin, Germany.
7.Khanmohamadi, F., Homaee, M., and Noroozi, A.A. 2015. Soil Moisture Estimating with NDVI and LAND Surface Temperature and Normalized Moisture index using MODIS images. J. Soil Water Resour. Cons. 4: 2. 37-45.(In Persian)
8.Lin, M.L. 2009. Monitoring Drought Dynamics in the Ejin Oasis using Drought Indices from MODIS Data. Geoscience and Remote Sensing Symposium. 4: 834-837.
9.Lunt, L.A., Hubbard, S.S., and Rubin, Y. 2005. Soil moisture content estimation using ground penetrating radar reflection data. J. Hydrol. 307: 1. 254-269.
10.Mekonnen, D.F. 2009. Satellite remote sensing for soil moisture estimation: Gumara Catchment, Ethiopia. M.Sc. Thesis of Geo-information Scienceand Earth Observation, Specialisation: (Integrated -Watershed Modelling and Management). WREM Department of ITC, Enschede, the Netherlands, 120p.
11.Moran, M.S., Clarke, T.R., Inoue, Y., and Vidal, A. 1994. Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index. Remote Sens. Environ. 49: 3. 246-263.
12.Nelson, R.E. 1982. Carbonate and gypsum. P 181-199, F. Matter (eds.),In: Methods of Soil Analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, WI.
13.Nouri, M., Homaee, M., and Bybordi, M. 2013. Parametric Assessment of Soil Retention at Presence of Petroleum in Three-phase system. J. Soil Water Resour. Cons. 2: 2. 15-24. (In Persian)
14.Price, J.C. 1990. Using Spatial Context in Satellite Data to Infer Regional Scale Evapotranspiration. IEEE Transactions on Geoscience and Remote Sensing.28: 5. 940-948.
15.Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. 1973. Monitoring Vegetation Systems in the Great Plains with ERTS. 3rd ERTS Symposium, NASA SP-351, Washington DC, 10-14 December 1973, 309-317.
16.Sandholt, I., Rasmussen, K., and Andersen, J. 2002. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 79: 2. 213-224.
17.Wang, L., and Qu, J.J. 2007. NMDI:A Normalized Multi-Band Drought Index For Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing. Geophysical Research Letters. 34: 20405. 1-5.
18.Western, A.W., and Grayson, R.B. 1998. The Tarrawarra data set: soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resource Research. 34: 10. 2765-2768.
19.Willmott, C.J., and Wicks, D.E. 1980. An empirical method for the spatial interpolation of monthly precipitation within California. Physical Geography. 1: 1. 59-73. ‏
20.Yang, X., Wu, J.J., Shi, P.J., and Yan, F. 2008. Modified Triangle Method to Estimate Soil Moisture Status with Moderate Resolution Imaging Spectroradiometer (MODIS) Products. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXVII: B8. 555-560.