پیش بینی فضایی-زمانی خشکسالی با استفاده از شاخص SPEI در شمال شرق ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه آمار، دانشکده علوم ریاضی، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

سابقه و هدف: خشکسالی به عنوان پیچیده‌ترین و خطرناک‌ترین بلایا‌ی طبیعی است که هم در مکان و هم طی زمان تغییر می‌کند. گرمایش جهانی در سال‌های اخیر باعث تشدید این گونه رویدادهای حدی شده است. از این رو استفاده از شاخص‌های خشکسالی که هر دو اثر بارش و دما را در نظر می‌گیرند و نیز استفاده از روش‌های توأم فضایی- زمانی که گسترش یافته‌ی آمار مکانی هستند، احتمالاً می‌تواند باعث پایش بهتر خشکسالی‌ها و در نتیجه افزایش دقت پیش‌بینی‌ها گردد. در این روش‌ها ساختار همبستگی داده‌ها توسط توابع کوواریانس فضایی-زمانی مشخص می‌شود. هدف از این تحقیق بکارگیری و مقایسه‌ی چند تابع تغییرنگار فضایی-زمانی برای پیش‌بینی و پهنه‌بندی فضایی-زمانی خشکسالی با استفاده از شاخص SPEI در مقیاس 12 ماهه می‌باشد.
مواد و روش‌ها: در این تحقیق از داده‌های ماهانه بارندگی و دمای 48 ایستگاه در شمال شرق کشور طی دوره‌ی آماری 1981-2012 برای محاسبه‌ی مقادیر شاخص SPEI در مقیاس 12 ماهه استفاده شده است. تحلیل اکتشافی داده‌ها از نظر فرض‌های مانایی و همسانگردی نیز مورد بررسی قرار گرفت. داده‌ها به دو گروه داده‌های آموزشی و آزمایشی سال 2012 تقسیم شدند. توابع کوواریانس فضایی-زمانی تفکیک‌پذیر، متریک، متریک-جمعی و ضربی-جمعی با تعیین بهترین ترکیب از تغییرنگار‌های کروی، خطی و نمایی برای هریک از تغییرنگار‌های فضایی و زمانی بر روی داده‌های آموزشی برازش داده شدند. بهترین مدل با استفاده از معیارهای آماری MSE و MSPE، انتخاب و پارامترهای مورد نیاز آن برآورد شدند. در نهایت با استفاده از کریجینگ فضایی-زمانی، داده‌های آزمایشی پیش‌بینی و پهنه‌بندی شده و با نقشه‌ی مقادیر مشاهداتی مقایسه شدند. اعتبارسنجی متقابل مدل‌های فضایی-زمانی و فضایی محض از طریق معیارهای آماری COR، ME، MAE و RMSE با بکارگیری 25 و 47 همسایگی انجام گرفت.
یافته‌ها: بررسی مانایی داده‌های فضایی-زمانی، مانایی در فضا را نشان داد. رسم میانگین سری زمانی داده‌ها هم یک روند کاهشی را نشان داد که توسط یک رابطه‌ی رگرسیونی ساده با بکارگیری مقادیر شاخص SPEI به عنوان متغیر وابسته و زمان به عنوان متغیر تبیینی مدل گردید و داده‌ها روندزدایی شدند. تغییرنگار فضایی داده‌ها در چهار جهت صفر، 45، 90 و 135 درجه، تفاوت زیادی را بین چهار تغییرنگار‌ نشان نداد و بنابراین فرض همسانگردی مورد پذیرش قرار گرفت. برای تعیین ساختار همبستگی داده‌ها از مدل‌های تفکیک-پذیر، متریک، متریک-جمعی و ضربی-جمعی استفاده شد. مقایسه‌ی مدل‌ها از طریق معیار MSE نشان داد دو مدل ضربی-جمعی و متریک جمعی خطای کمتری نسبت به دو مدل دیگر دارند. مقایسه‌ی این دو مدل در پیش‌بینی مقادیر مشاهده نشده از طریق معیار MSPE، مدل ضربی-جمعی را با تغییرنگار خطی برای هر دو فضا و زمان به عنوان مدل برتر انتخاب نمود. پس از برآورد پارامترهای مدل و با بکارگیری کریجینگ فضایی-زمانی، مقادیر شاخص SPEI برای داده‌های آزمایشی پیش‌بینی و نقشه‌ی فضایی-زمانی آنها ترسیم شد. شباهت نقشه‌ی مقادیر پیش‌بینی شده و نقشه‌ی مقادیر مشاهداتی نشان داد عملکرد خوب در پیش‌بینی مقادیر مشاهده نشده را نشان داد. اعتبارسنجی مدل‌های تغییرنگار فضایی-زمانی و فضایی محض نیز نشان داد عملکرد مدل‌های مختلف بسیار نزدیک به یکدیگر بوده است.
نتیجه گیری: نتایج این تحقیق نشان داد مدل‌ کوواریانس فضایی-زمانی ضربی-جمعی نسبت به مدل‌های دیگر توانایی خوبی در پیش‌بینی مقادیر مشاهده نشده دارد و به کمک این گونه مدل‌ها می‌توان مقادیر متغیر مورد نظر خود را در هر موقعیت فضایی و هر مقطع زمانی پیش‌بینی نمود. هم‌چنین اعتبارسنجی مدل‌ها نشان داد مدل‌های مختلف فضایی-زمانی و فضایی محض تفاوت چشمگیری نسبت به یکدیگر نداشته و دقت مدل‌ها نیز نسبت به حالت فضایی محض افزایش پیدا نکرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Spatio-temporal Prediction of Drought by Using SPEI in North-East of Iran

نویسندگان [English]

  • Mahsa Sameti 1
  • Sayed Hossein Sanaei nejad 2
  • bijan ghahreman 1
  • Firoozeh Rivaz 3
1 Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhsd, Iran.
2 Department of Water Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Deparatment of Statistics, College of Mathematics, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Background and objectives: Drought is one of the most complex and dangerous natural disasters that changes both in space and time. Global warming has intensified such extreme events in recent years. Thus, the use of drought indices that consider both the effects of precipitation and temperature, as well as the use of joint spatio-temporal methods, which are the extensions of spatial statistics, can probably lead to better drought monitoring and thereby increasing the accuracy of predictions. The data correlation structure is determined by the spatio-temporal covariance functions in these methods. The aim of this study is to use and compare a number of spatio-temporal variograms for predicting and spatio-temporal mapping of drought by using the 12- month SPEI index.
Materials and methods: In this research, the monthly rainfall and temperature data of 48 stations in the northeast of Iran during the statistical period of 1981-2012 were used to calculate the SPEI index in a 12-month time scale. The exploratory analysis of the data was studied in terms of stationarity and isotropy assumptions. The data were divided into two groups of training and experimental data of 2012. The separable, metric, sum-metric and product-sum spatio-temporal covariance functions were fitted to determine the best combination of spherical, linear and exponential variograms for each of the spatial and temporal variograms on training data. The best model was selected using the MSE and MSPE statistical criteria, and the required parameters were estimated. Finally, using spatio-temporal kriging, the experimental data were predicted, mapped, and compared with the map of the observed values. Cross-validation of spatio-temporal and purely spatial models was done via COR, ME, MAE and RMSE statistical criteria by using 25 and 47 neighborhoods.
Results: The test of the stationarity of spatio-temporal data showed the spatial stationary. Drawing of the average time series data showed a decreasing trend, which was modeled by a simple regression with the use of SPEI index values as dependent variable and time as an explanatory variable, and the data were detrended. The spatial variogram in four directions of 0°, 45°, 90° and 135° did not show a significant difference between the four variograms and the assumption of isotropy was therefore accepted. The separable, metric, sum-metric and product-sum models were used to determine the correlation structure of data. The comparison of models by means of MSE criteria showed that product-sum and sum-metric models have less error as compared with the other two models. Comparison of these two models in the prediction of unobserved values selected the product-sum model as the better model with the linear variogram for both the space and time via the MSPE criteria. After estimating the model parameters and using spatio-temporal kriging, the SPEI values were predicted for the experimental data and their spatio-temporal maps were plotted. The similarity of the map of the predicted values and that of observed values indicated the good performance of the model in predicting the unobserved values. Cross-validation of spatio-temporal and purely spatial models also showed that the performances of various models were very close to each other.
Conclusion: The results of this study showed that the product-sum spatio-temporal covariance model has a good ability to predict the unobserved values as compared to other models, and with the aid of these models, the values of the desired variable can be predicted in any spatial location and at any time scale. Also, cross-validation of the models showed that the different spatio-temporal and purely spatial models do not differ significantly from one another, and the precision of the models have not increased as compared to the purely spatial state.

کلیدواژه‌ها [English]

  • Keywords: Drought
  • Standardized Precipitation-Evapotranspiration Index
  • Product-sum model
  • Spatio-temporal kriging
1.Abramowitz, M., and Stegun, I.A. 1965. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1046p.
2.Ahmed, S.O., Mazloum, R., andAbou-Ali, H. 2018. Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt. J. Environ. Res. 160: 27-34.
3.Akbarzadeh, M., and Ghahraman, B. 2013. A combined strategy of entropy and spatio-temporal kriging in determining optimal network for groundwater quality monitoring of Mashhad basin. J. Water Soil. 27: 3. 613-629. (In Persian)
4.Cressie, N., and Huang, C. 1999.Classes of nonseparable, spatiotemporal stationary covariance functions. J. Am. Stat. Assoc. 94: 1330-40.
5.De Cesare, L., Myers, D., and Posa,D. 1997. Spatial-temporal modelingof SO2 in Milan district. In: E.Y. Baafi and N.A. Schofield (eds), Geostatistics Wollongong’96, 2: 1031-42. Kluwer Academic Publishers, the Netherlands, Pp: 1031-1042.
6.De Cesare, L., Myers, D.E., and Posa, D. 2001a. Estimating and modelling space- time correlation structures. Statistics and Probability Letters. 51: 1. 9-14.
7.De Cesare, L., Myers, D.E., and Posa, D. 2001b. Product–sum covariance for space-time modeling: an environmental application. Environmetrics. 12: 11-23.
8.De Iaco, S., Myers, D.E., and Posa, D. 2001. Space-time analysis using a general product-sum model. Statistics and Probability Letters. 52: 1. 21-28.
9.De Iaco, S., Myers, D.E., and Posa, D. 2002a. Space-time variograms and a functional form for total air pollution measurements. J. Comput. Stat. Data. Anal. 41: 2. 311-328.
10.De Iaco, S., Myers, D.E., and Posa, D. 2002b. Nonseparable space-time covariance models: some parametric families. J. Math Geol. 34: 23-42.
11.Dimitrakopoulos, R., and Luo, X. 1994. Spatiotemporal modeling: covariances and ordinary kriging system. In
R. Dimitrakopoulos (ed.), Geostatistics for the Next Century, P 88-93.Kluwer Academic Publishers, Dordrecht, Pp: 88-93.
12.Gräler, B., Pebesma, E., and Heuvelink, G. 2016. Spatio-Temporal Interpolation using gstat. Wp, 8: 1–20. ⟨https://cran.r-project.org/web/packages/gstat/vignettes/spatio-temporalkriging.pdf⟩ (last access: 25 Mar 2016).
13.Gneiting, T. 2002. Nonseparable, stationary covariance functions for space- time data. J. Am. Stat. Assoc.
97: 458. 590-600.
14.Guttorp, P., Sampson, P.D., and Newman, K. 1992. Nonparametric Estimation of Spatial Covariance with Application to Monitoring Network Evaluation, Statistics in the Environmental and Earth Sciences, Edward Arnold Press, London, Pp: 39-57.
15.Hasanalizadeh, N., Mosaedi, A., Zahiri, A.R., and Hosseinalizadeh, M. 2015. Modeling spatio-temporal variation of monthly precipitation (Case study: Golestan province). J. Water Soil Cons. 22: 1. 251-269. (In Persian)    
16.Hengl, T., Heuvelink, G.B.M., Tadić, M., and Pebesma, E. 2012. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. J. Theor. Appl. Climatol. 107: 265-277.
17.Heuvelink, G.B.M., and Griffith, D.A. 2010. Space-time geostatistics for geography: A case study of radiation monitoring across parts of Germany. J. Geogr. Anal. 42: 2. 161-179.
18.Hu, D., Shu, H., Hu, H., and Xu, J. 2017. Spatiotemporal regression Kriging to predict precipitation using time- series MODIS data. J. Cluster Comput. 20: 1. 347-357.
19.Kilibarda, M., Hengl, T., Heuvelink, G.B.M., Gräler, B., Pebesma, E.,Perčec Tadić, M., and Bajat, B. 2014. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos. 119: 5. 2294-2313.
20.Mohammadzadeh, M. 2012. Spatial Statistics and Its Application. Tarbiat Modares University. Press, 416p.
(In Persian)
21.Montero, J.M., Fernández-Avilés, G., and Mateu, J. 2015. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging. John Wiley & Sons, Ltd, Chichester: UK, 400p.
22.Rivaz, F., Mohammadzadeh, M., and Jafari Khaledi, M. 2007. Emperical Bayesian prediction for spatio-temporal data under a separable model. J. Stat. Sci. 1: 1. 45-59. (In Persian)
23.Rivaz, F., Mohammadzadeh, M., and Khaledi, M.J. 2011. Spatio-temporal modeling and prediction of CO concentrations in Tehran city, J. Appl. Stat. 38: 9. 1995-2007.
24.Rodríguez‐Iturbe, I., and Mejía, J.M. 1974. The design of rainfall networks in time and space. Water. Resour. Res.
10: 4. 713-728.
25.Rouhani, S., and Hall, T.J. 1989.Space-time kriging of groundwater data. In: M. Amstrong (ed.) Geostatistics: 639-51. Kluwer Academic Publishers, Dordecht. Pp: 639-651.
26.Snepvangers, J.J.J.C., Heuvelink, G.B.M., and Huisman, J.A. 2003. Soil water content interpolation using spatio-temporal kriging with external drift. J. Geoderma. 112: 253-271.
27.Stein, M.L. 2005. Statistical Methods for Regular Monitoring Data. J. Roy. Stat. Soc. B. 67: 667-687.
28.Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I. 2010. A multi-scalar drought index sensitive to global warming: the Standardized Precipition Evapotranspiration Index-SPEI. J. Clim. 23: 7. 1696-1718.