روش‌های ترکیبی چندگانه مدل‌سازی برای تجزیه و تحلیل شبیه‌سازی‌های هیدرولوژیکی (مطالعه موردی: زیرحوضه آبریز قره‌سو، استان کرمانشاه)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه بیرجند گروه مهندسی آب

2 استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

3 گروه علوم و مهندسی آب- دانشکده کشاورزی- دانشگاه بیرجند

4 دانشجوی دکتری منابع آب، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

سابقه و هدف: مدل‌های شبیه‌سازی هیدرولوژیکی نمایش ساده شده‌ای از سیستم هیدرولوژی واقعی هستند که به مطالعه درباره کارکرد حوضه در واکنش به ورودی‌های گوناگون و فهم بهتر از فرآیندهای هیدرولوژی کمک می‌کنند. این مدل ها با شبیه‌سازی فرآیند بارش- رواناب قادر به تخمین میزان رواناب حوضه‌های آبریز با کمترین زمان و هزینه ممکن بوده ولی علیرغم توانمندی‌های بالا، دارای خطا می‌باشند. یکی از مهمترین مسائل در بین پژوهشگران، برطرف نمودن این خطاها می‌باشد. ازین رو، کاربرد روش های ترکیبی به عنوان یکی از رویکردهای مورد استفاده جهت بهبود نتایج مورد تاکید این تحقیق می باشد. در این پژوهش برای تجزیه و تحلیل شبیه‌سازی‌های هیدرولوژیکی از چهار روش ترکیبی چندگانه (Simple Model Average (SMA)، Weighted Average Method (WAM)، Multi Model Super Ensemble (MMSE) و Modified Multi Model Super Ensemble (M3SE)) در زیرحوضه آبریز قره‌سو واقع در استان کرمانشاه استفاده شده است.
مواد و روش‌ها: زیر‌حوضه آبریز قره‌سو با مساحت 5354 کیلومترمربع در شمال‌غربی حوضه کرخه و در غرب ایران واقع شده‌است. در این پژوهش داده‌های پایه مورد استفاده شامل داده‌های دما، بارش و رواناب مشاهده‌ای به صورت روزانه طی دوره آماری 2008 -1997 از ایستگاه‌های منتخب منطقه می‌باشد. 70 درصد داده‌ها برای دوره واسنجی (2005 –1997) و 30 درصد باقی‌مانده برای صحت‌سنجی (2008 -2006) بکار گرفته شد. بدین‌منظور، از مدل‌های موجود در بسته نرم‌افزاری RRL چون Simhyd، AWBM، Sacramento و TANK و مدل‌های SCS-Milc و Hymod کدنویسی شده در زبان برنامه‌نویسی Matlab استفاده شد. پس از حصول نتایج، به منظور بهبود نتایج از چهار روش ترکیبی SMA، WAM، MMSE و M3SE استفاده شد. در نهایت با استفاده از شاخص‌های ارزیابی ریشه میانگین مربعات خطای نرمال(NRMSE) و نش- ساتکلیف (NS) عملکرد هر کدام از روش‌ها بررسی شد.
یافته‎ها: در پژوهش حاضر تمامی مدل‌های شبیه‌سازی شده نتایج قابل قبولی را ارائه می‌دهند. نتایج مربوط به روش‌های ترکیبی نشان داد که به طور کلی روش‌ها موجب بهبود نتابج شبیه‌سازی شده‌اند. هم‍چنین بیشترین میزان بهبود به ترتیب در روش‌های M3SE و MMSE بدست آمد. مقدار شاخص‌های ارزیابی NS و NRMSE در روش M3SE به ترتیب 80/0 و 97/0 در دوره واسنجی و در دوره صحت‌سنجی 87/0 و 53/0 بدست آمد.
نتیجه‌گیری: روش‌های ترکیبی چندگانه به طور مشخص نتایج شبیه‌سازی دبی جریان توسط هر یک از مدل‌های شبیه‌سازی را بهبود بخشیدند. هرچند روش M3SE به دلیل داشتن فرآیندی که در آن تاثیر تصحیح خطا دیده شده است نتایج بهتری نسبت به بقیه ارائه داده است. در نهایت در بدترین حالت می توان انتظار داشت خروجی مدل ترکیبی M3SE برابر یا بهتر از بهترین شبیه سازی از بین مدل های هیدرولوژی به کار رفته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Multimodel Combination Techniques for Analysis of Hydrological Simulations (Case Study: Gharesou sub-basin, Kermanshah Province)

نویسندگان [English]

  • Mohsen Pourreza Bilondi 1
  • Hadi Memarian 2
  • Ali Shahidi 3
  • Samira Rahnama 4
1
2 Assistant professor, Range and Watershed Management Department, College of Natural Resources and Environment, University of Birjand, Birjand, Iran
3 Water Eng. Dept. , faculty of Agriculture, University Of Birjand
4 Ph. D Student of Water Resources Engineering, Water Engineering Department, College of Agriculture, University of Birjand, Birjand, Iran
چکیده [English]

Background and objectives: The hydrological simulation models represent a simplified representation of the real hydrologic system that helps to study the functioning of the basin in response to various inputs and better understanding of hydrological processes. These models are able to estimate the runoff values with the lowest possible time and costs using the simulation of rainfall-runoff process. Despite high efficiency, these models have uncertainty. One of the most important issues among researchers is the elimination of these uncertainties. Hence, the application of the combination technique as one of the most important approaches to improve results of simulations is main aim of this study. In this study, four models including the simple combination models (SMA), Weighted Average Method (WAM), Multi Model Super Ensemble (MMSE) and Modified Multi Model Super Ensemble (M3SE) were used analyze the hydrological simulations, in the Gharesou catchment, located in Kermanshah province.
Materials and methods: The Gharesou catchment, with nearly 5354 km2 area, is located in the northwestern parts of Karkheh basin and the western parts of Iran. In this study, the baseline daily data including observed temperature, rainfall and runoff during the period of 1997- 2008 were gathered from selected stations in the study area. 70 percent of the data was used for the calibration period (1997- 2005) and the remaining 30 percent for validation (2006- 2008). To this end, the models in the RRL package such as Simhyd, AWBM, Sacramento and TANK and the SCS-Milc and Hymod models, which are coded in the Matlab programming language, were used. Then, four combination methods including SMA, WAM, MMSE and M3SE were used to improve the results. Finally, the performance of each method was evaluated using normalized root mean square error (NRMSE) and Nash-Sutcliff (NS).
Results: In the present study, all simulated models provide acceptable results. The results of the combination methods showed that the application of these methods led to improve the simulation results. Also, the most improvement of results was achieved by M3SE and MMSE, respectively. For the M3SE method, the value of the NS and NRMSE evaluation criteria were 0.80 and 0.97 in the calibration period and 0.87 and 0.53 in the validation period, respectively.
Conclusion: As resultant it can be expressed that Multiple Combination techniques improved the results of simulated flow by each simulation model obviously. It also may be resulted that recent technique (M3SE) is more efficient than other due to incorporating the bias correction step. Finally it is observed that multimodel simulation generated by M3SE can be better at least comparable to the best-calibrated single-model simulations.

کلیدواژه‌ها [English]

  • Rainfall-runoff simulation
  • Gharesou
  • RRL package
  • combination techniques
1.Ajami, N.K., Duan, Q., Gan, X., and Sorooshian, S. 2006. Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results. J. Hydrometeorol. 7: 4. 755-768.
2.Bates, J.M., and Granger, C.W.J. 1969. The combination of forecasts. J. Oper. Res. Soc. 20: 4. 451-468.
3.Clemen, R.T. 1989. Combining forecasts: A review and annotated bibliography. Inter. J. Forecast. 5: 4. 559-583.
4.Dickinson, J.P. 1973. Some statistical results in the combination of forecast. J. Oper. Res. Soc. 24: 2. 253-260.
5.Dinpashoh, Y. 2006. Study of reference crop evapotranspiration in I.R. of Iran. J. Agric. Water Manage. 84: 1-2. 123-129.
6.Dovonec, E. 2000. A physically base distributed hydrologic model,M.Sc. Thesis, the Pennsylvania State University.
7.Farahmand Rad, M. 2016. Multi-objective calibration of conceptual hydrological model based on geomorphological instantaneous unit hydrograph (GIUH) using AMALGAM algorithm, M.Sc. Thesis, Graduate University of Advanced Technology. 116p. (In Persian)
8.Fraedrich, K., and Smith, N.R. 1989. Combining predictive schemes in long-range forecasting. J. Clim. 2: 3. 291-294.
9.Geetha, K., Mishra, S.K., Eldho, T.I., Rastogi, A.K., and Pandey, R.P. 2008. SCS-CN-based continuous simulation model for hydrologic forecasting. Water Resources Management, 22: 2. 165-190.
10.Geoff, P. 2004. CRC for Catchment Hydrology, Australia, 100p.
11.Georgakakos, K.P., Seo, D.J., Gupta, H., Schake, J., and Butts, M.B. 2004. Characterizing streamflow simulation uncertainty through multi model ensembles. J. Hydrol. 298: 1-4. 222-241.
12.Ghorbani, K., and Salarijazi, M. 2016. Estimation of monthly discharge using climatological and physiographic parameters of ungauged basin. J. Water Soil Cons. 23: 3. 207-224. (In Persian)
13.Jabbari, A., Bahmanesh, J., and Hessari, B. 2017. Modelling the daily runoff of Nazloo Chai watershed at the west side of Urmia Lake. J. Water Soil Cons.23: 6. 123-141. (In Persian)
14.Krishnamurti, T.N., Kishtawal, C.M., LaRow, T., Bachiochi, D., Zhang, Z., Williford, C.E., Gadgil, S., and Surendran, S. 1999. Improved skill of weather and seasonal climate forecasts from multimodel superensemble. J. Sci. 285: 5433. 1548-1550.
15.Krishnamurti, T.N., Kishtawal, C.M., Shin, D.W., and Williford, C.E. 2000a. Improving tropical precipitation forecasts from a multi-analysis superensemble. J. Clim. 13: 23. 4217-4227.
16.Krishnamurti, T.N., Kishtawal,C.M., Zhang, Z., LaRow, T., Bachiochi, D., and Willi Ford, C.E. 2000b. Multimodel ensemble forecastsfor weather and seasonal climate. J. Clim. 13: 23. 4196-4216.
17.Liao, W., and Lei, X. 2012. Multi-model Combination Techniques for Flood Forecasting from the Distributed Hydrological Model EasyDHM. Computational Intelligence and Intelligent Systems, 316: 1. 396-402.
18.Mayers, M., Krishnamurti, T.N., Depradine, C., and Moseley, L. 2001. Numerical weather prediction over the eastern Caribbean using Florida State University (FSU) global and regional spectral models and multi-model/multi-analysis superensemble. J. Meteorol. Atm. Physic. 78: 1-2. 75-88.
19.Newbold, P., and Granger, C.W.J. 1974. Experience with forecasting univariate time series and the combination of forecasts. J. Royal Stat. Soc. 137: 2. 131-146.
20.Pourreza Bilondi, M., Akhoond Ali, A.M., Ghahraman, B., and Telvari, A. 2015. Uncertainty Analysis a single event distributed rainfall-runoff model with using two different Markov Chain Monte Carlo methods. J. Water Soil Cons. 21: 5. 1-26. (In Persian)
21.Pourreza Bilondi, M., Khashei Siuki, A., and Sadeghi Tabas, S. 2015. Daily rainfall-runoff modeling with Least Square Support Vector Machine (LS- SVM). J. Water Soil Cons. 21: 6. 293-304. (In Persian)
22.Rouhani, H., and Farahi Moghadam,M. 2014. Application of the genetic algorithm technique for optimization of the Hydrologic TANK and SIMHHYD Models’ Parameters. J. Range Water. Manage. 66: 4. 521-533. (In Persian)
23.Salmani, H. 2011. Optimization of Effective Parameters in Precipitation-Runoff in Semi Distributed Model SWAT (Case study of GozoghliSub-Basin, Gorgan River Basin, Gorgan Province). Master's Thesis. Department of natural resources. University of Tehran. 158p. (In Persian)
24.Shamseldin, A.Y., O'Connor, K.M., and Liang, G.C. 1997. Methods for combining the outputs of different rainfall-runoff models. J. Hydrol.197: 1-4. 203-229.
25.Spruill, C.A., Workman, S.R., and Taraba, J.L. 2000.Simulation of daily and monthly stream discharge from small watershed using the SWAT model. J. Soil Water Div. ASAE.43: 6. 1431-1440.
26.Thompson, P.D. 1976. How to improve accuracy by combining independent forecasts. J. Month. Weather Rev.
105: 2. 228-229.
27.Yun, W.T., Stefanova, L., and Krishnamurti, T.N. 2003. Improvement of the multimodel superensemble technique for seasonal forecasts. J. Clim. 16: 22. 3834-3840.
28.Zarrin, H., Moghadamnia, A.R., Namdorost, J., and Mosaedi, A. 2013. Simulation of outflow runoff in watersheds without statistics using rainfall- runoff AWBM model (Case study: Sistan and Baluchestan province). J. Water Soil Cons. 20: 2. 195-208.(In Persian)