ارائه مدل نیمه- اتوماتیک مبتنی بر آنالیز شیءگرا به منظور تهیه نقشه پراکنش فرسایش خندقی (مطالعه موردی: حوزه آبخیز لیقوان)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه تبریز – دانشکده کشاورزی – گروه علوم و مهندسی خاک

2 دانشگاه تبریز – دانشکده جغرافیا و برنامه ریزی – گروه سنجش از دور و سیستم اطلاعات جغرافیایی

3 دانشگاه مراغه – دانشکده کشاورزی – گروه علوم و مهندسی خاک

چکیده

چکیده
سابقه و هدف: به دلیل قرارگیری کشور ایران در ناحیه خشک و نیمه خشک، همواره متاثر از ناپایداری دامنه ای و فرسایش شدیدترین نوع‌ فرسایش، فرسایش خندقی می‌باشد. این شکل فرسایش در نقاط مختلف ایران و بطور مستمر در طی سالیان رخ داده و ضمن فرسایش و انتقال حجم بالای رسوب، سبب تخریب جاده‌ها، تاسیسات، مراتع، دامنه ها و غیره شده است که این موضوع شناسایی مناطق پرخطر و تهیه نقشه‌های حساسیت را ضروری می‌نماید. طی سال‌های اخیر پردازش تصاویر ماهواره‌ای بعنوان روشی پیشرفته و با هدف افزایش دقت و صرفه‌جویی در وقت و هزینه مورد استفاده گسترده محققین قرار گرفته است. روش آنالیز شیءگرای تصاویر یکی از مهمترین روشهای استخراج اطلاعات از تصاویر ماهواره‌ای می‌باشد که در آن بر اساس ویژگی‌های طیفی، شکلی و زمینه‌ای و با استفاده از دانش کارشناس، نسبت به شناسایی عوارض اقدام می‌شود.
مواد و روش‌ها: در این تحقیق، حوضه لیقوان به عنوان یکی از زیرحوضه‌های مهم آجی چای واقع در استان آذربایجان‌شرقی جهت مطالعه انتخاب و تصاویر ماهواره‌ای سنتینل-2 ( سال 2016 ) با قدرت تفکیک مکانی 10، 20 و 60 متری جهت پردازش و شناسایی خندق‌ها مورد استفاده قرار گرفت. تصاویر مذکور با استفاده از نرم‌افزار eCognition مورد پردازش قرار گرفته و با کاربرد انواع الگوریتم‌های مختلف نسبت به طراحی مدلی نیمه-اتوماتیک مبتنی بر آنالیز شیءگرا اقدام شد. در نهایت به منظور ارزیابی دقت مدل، خندق‌های شناسایی شده بصورت نقشه خروجی گرفته و با انتقال به نرم‌افزار ArcGIS و مطابقت دادن با نقشه واقعیت زمینی و تشکیل ماتریس خطا، دقت تولید کننده، دقت کاربر و ضریب کاپا برای هر کدام از الگوریتم‌ها محاسبه گردید.
یافته‌ها: نتایج حاصله نشان داد که الگوریتم‌های تراکم و ضریب فشردگی به ترتیب دارای بیشترین و کمترین دقت تولیدکننده بوده (دقت تولیدکننده به ترتیب برابر با 88 و 78) در حالیکه بر اساس ضریب کاپا الگوریتم عدم تقارن بیشترین دقت و صحت را در مقایسه با سایر روش‌ها داشته (کاپا برابر 91/0) و بعد از آن الگوریتم‌های شاخص شکل و تراکم به ترتیب با ضریب کاپا برابر 89/0 و 85/0 دارای دقت قابل قبولی برای طبقه‌بندی و شناسایی خندق‌ها ارائه دادند.
نتیجه‌گیری: استفاده از روش‌های شیءگرا به دلیل افزایش دقت و صحت طبقه‌بندی و شناسایی عوارض و پدیده‌های سطحی، می‌تواند بعنوان راهگشای مناسبی در تحقیقات آتی خاکشناسی و پدیده‌های طبیعی مورد استفاده قرار گیرد. در تحقیق حاضر با استفاده از خصوصیات طیفی و هندسی تصاویر ماهواره‌ای سنتینل-2 و پردازش شیءگرا در محیط نرم افزار eCognition مدلی نیمه-اتوماتیک برای شناسایی خندق ارائه شد.
واژه‌های کلیدی: الگوریتم‌های شیءگرا، پردازش شیءگرا، قطعه‌بندی، طبقه‌بندی

کلیدواژه‌ها


عنوان مقاله [English]

Semi-Automated Object-Based Model for Producing Gully Erosion Inventory Map (Case Study: Lighvan watershed)

نویسندگان [English]

  • Panah Mohammadi 1
  • Abbas Ahmadi 1
  • Bakhtiar Feizizadeh 2
  • Ali Asghar Jafarzadeh 1
  • Mehdi Rahmati 3
1 University of Tabriz – Faculty of Agriculture – Department of Soil Science
2 University of Tabriz – Faculty of Geography and Planing – Department of Remote Sensing and Geographic
3 University of Maragheh – Faculty of Agriculture – Department of Soil Science
چکیده [English]

Abstract
Background and objectives: Due to the location of Iran in a dry and semi-arid region, it is always affected by sloping instability and erosion as the most severe type of erosion, gully erosion. This erosion pattern occurred in different parts of Iran and continuously over many years, and during erosion and the transfer of high sediment volume, it destroyed roads, facilities, pastures, slopes, etc. This will require the identification of high risk areas and the development of sensitivity maps. In recent years, the processing of satellite imagery as an advanced method has been widely used by researchers to increase the accuracy and save time and money. The object-oriented analysis of images is one of the most important methods for extracting information from satellite imagery, which is based on spectral, form and spatial characteristics and using expert knowledge to identify complications.
Materials and methods: In this research, the Lighwan watershed basin was studied as one of the most important sub-basins of Aji Chay in East Azarbaijan Province and the satellite images of Sentinel-2 (2016) with spatial resolution of 10, 20 and 60 meters for the processing and identification of gully Was used. The images were processed using the eCognition software and applied with different types of algorithms to design a semi-automatic model based on object-oriented analysis. Finally, in order to evaluate the accuracy of the model, the identified Gully were mapped out and calculated using ArcGIS software to match the ground reality map and the formation of the error matrix, manufacturer accuracy, user accuracy and kappa coefficient for each of the algorithms.
Results: The results showed that the Density and Compactness algorithms had the highest and lowest accuracy of the manufacturer (manufacturer accuracy was 88 and 78 respectively). While based on Kappa coefficient, the asymmetry algorithm has the highest accuracy compared to other methods (kappa = 0.91). Then, the shape index and density algorithms with kappa coefficient equal to 0.89 and 0.85 provided acceptable accuracy for the classification and identification of the gully.
Conclusion: The use of object-oriented methods due to the increased accuracy of classifying and identifying surface effects and phenomena can be used as a suitable solution for future soil studies and natural phenomena. In the present study, semi-automatic semi-automatic model for ditch identification was presented using spectral and geometric properties of Sentinel-2 satellite images and object-oriented processing in eCognition software environment.
Key words: Object Oriented Algorithms, Object-Oriented Processing, Segmentation, Classification

کلیدواژه‌ها [English]

  • Key words: Object Oriented Algorithms
  • Object-Oriented Processing
  • Segmentation
  • Classification
1.Aabedi, F., Mohammadzadeh, A. Mokhtarzadeh, M., and Valadan Zouj, M.J. 2015. Comparison and Evaluation of the object-based and pixel-based analysis of LiDAR and large-scale optical images in metropolitan area. J. Soft Comp. Inf. Technol. 4: 3. 118-128.
2.Akbari, D., Homayouni, S., and Seresht, M.S. 1390. Improving the accuracy of spectral detection of roofs through intelligent integration the method of target detection in ultrasound images. Iran. J. Remote Sens. GIS. 2: 97-114.(In Persian)
3.Alavi-Panah, S.K. 2012. Application of Remote Senseing in the Earth Sciences (soil). 4th Edition. Tehran: University of Tehran. 438p. (In Persian)
4.Alqurashi, A.F., Kumar, L., and Sinha, P. 2016. Urban land cover change modelling using time-series satellite images:
A case study of urban growth in five cities of Saudi Arabia, J. Rem. Sens.8: 10. 838-852.
5.Brodsky, L., and Boruvka, L. 2006. Object-oriented fuzzy analysis of remote sensing data for bare soil brightness mapping. Soil and Water Research.1: 3. 79-84.
6.Dominique, C., Christopher, D., Adam, S., Nicholas, W., and Eric, P.S.S. 2018. An Object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery-ISPRS Inter. J. Geo-Inf. ISPRS Int. J. Geo-Inf. 7: 8. 294-309.
7.Fatemi, S.B., and Rezaei, Y. 2012. Principles of remote sensing (3rd ED). Azadeh Press, Tehran, 288p. (In Persian)
8.Feyzizadeh, B., Blaschke, T., Tiede, D., and Rezaei Moghaddam. M. 2017. Evaluating fuzzy operators of anobject-based image analysis for detecting landslides and their changes. Geomorphology. 293: 240-254.
9.Feyzizadeh, B., Kazemi, S., and Sharafi, S. 1397. A Semi-Automated Approach For Identifying And Classifying Urban Distressed And Modern Area Based On Spectral And Spatial Patterns In Object-Oriented Remote Sensing: A Case Study Area Isfahan City. Human Geography Research Quarterly. 50: 3. 661-678.(In Persian) 
10.Feyzizadeh, B., and Helali, H. 2009. Comparision of pixel based and object-oriented methods in vegetation/ landuse classifiation in western Azarbayejan.J. Physic. Geograph. Res. Quar.71: 1. 73-84. (In Persian)
11.Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P. 2008. Comparing landslide inventory maps. Geomorphology. 94: 3-4. 268-289.
12.Göksel, C., David, R.M., and Dogru, A.O. 2018. Environmental Monitoring of Spatio-Temporal Changes in Northern Istanbul using remote sensing and GIS. Inter. J. Environ. Geoinf.5: 1. 94-103.
13.Hölbling, D., Friedl, B., and Eisank, C. 2015. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Science Informatics. 8: 2. 327-335.
14.Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., and Sattarian, A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Inter. J. Environ. Sci. Technol. 11: 4. 909-926.
15.Lu, P., Stumpf, A., Kerle, N., and Casagli, N. 2011. Object-oriented change detection for landslide rapid mapping. Geoscience and Remote Sensing Letters, IEEE. 8: 4. 701-705.
16.Moghimi, E., Bagheri Seyedshokri, S., and Safarrad, T. 2012. Zoning of landslide hazard using entropy model (Case study: Nesar Anticline at North West Zagros). J. Physic. Geograph. Res. Quar. 44: 1. 77-90. (In Persian)
17.Moine, M., Puissant, A., and Malet, J.P. 2009. Detection of landslides fromaerial and satellite images with a semiautomatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). In: Malet,
J.P., Remaitre, A., Bogaard, T.(Eds.), Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. CERG, Strasbourg, France. Pp: 63-68.
18.Moosavi, V. 2012. Application of object oriented and pixel based remote sensing methods in Barchans study. M.Sc. Dissertation. Faculty of Natural Resources and Marine Sciences. Tarbiat Modares University. 88p. (In Persian)
19.Mousavi Khatir, S.Z., Kavian, A., and Solaimani, K. 2010. Pepration of landslide susceptibility map in Sajaroud watershed using Logistic Regression model. J. Sci. Technol. Agric. Natur. Resour. Water and Soil Science.53: 3. 99-111.
20.Nohegar, A., Kazemi, M., Ahmadi, S.J., Gholami, H., and Mahdavi, R. 1395. Using pixel basis and subpixel based techniques to identify alteration zones (Case study: Tange Bostanak Region). Quantitative Geomorphological Research. 5: 1. 89-109.
21.Shadfar, S., and Yamani, M. 2007. Zoning of landslide hazard in Jelisan watershed using LNRE model. J. Physic. Geograph. Res. Quar. 62: 4. 11-23.(In Persian)
22.Tolga, M., Balcik, F.B., Şanlı, F.B., Mustafa, Ü., Kaan, K., Çiğdem, G., Cem, G., and Yusuf, K. 2018. Comparison of Object and pixel-based classifications for mapping crops using rapideye imagery: A Case Study of Menemen Plain, Turkey. Inter. J. Environ. Geoinf. 5: 2. 231-243.
23.Villa, A., Benediktsson, J.A., Chanussot, J., and Jutten, J. 2011. Hyperspectral image classification with iIndependent component discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing. 49: 12. 4865-4876.
24.Zandi, J. 2012. Prioritization of controlling area on soil erosion using RS and GIS techniques (A case study: Vzaroud watershed, Mazandaran).M.Sc. Dissertation. Faculty of Natural Resources. Sari Agricultural and Natural Resources University. 144p. (In Persian)