تخصیص بهینه منابع آبی با استفاده از الگوریتم ژنتیک با رتبه بندی نامغلوب(مطالعه موردی: شبکه آبیاری حمیدیه)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران

2 آبیاری و زهکشی، دانشکده علوم آب، دانشگاه چمران اهواز، ایزان

3 استاد آبیاری و زهکشی دانشگاه شهید چمران اهواز

چکیده

سابقه و هدف: با توجه به افزایش روزافزون محدودیت منابع آبی، نیاز به برنامه‌ریزی جهت استفاده بهینه و درست از منابع آبی به‌ویژه در بخش کشاورزی که بیشتر منابع آبی را مصرف می‌کند، احساس می‌شود. در راستای تدوین یک برنامه جهت مدیریت روند استفاده از منابع آبی در دسترس در شبکه آبیاری حمیدیه، پژوهشی به‌منظور تخصیص بهینه منابع آبی به الگوی کشت این شبکه آبیاری صورت گرفت.
مواد و روش‌ها: در این راستا سال آبی 95-94 به 36 دوره ده‌روزه تقسیم‌شده و مدلی چند هدفه جهت تخصیص منابع آبی به هر یک از دوره‌های ده‌روزه با هدف بیشینه‌سازی میزان کارایی مصرف آب نسبی و نسبت درآمد به هزینه به کمک الگوریتم ژنتیک با رتبه‌بندی نامغلوب ایجاد شد. همچنین جهت کمینه‌سازی خطای برآورد کاهش محصول در شرایط اعمال کم آبیاری، یک مدل بهینه‌سازی تک هدفه با کمک الگوریتم ژنتیک ایجاد شد.
یافته‌ها: نتایج مطالعه حاضر نشان داد که میزان برآورد شده کاهش محصول با استفاده از ضرایب حساسیت به تنش آبی ارایه شده در مطالعات پیشین در اثر اعمال کم آبیاری به‌تمامی مراحل رشد گیاه از 5/16 تا 5/195 درصد متغیر است که کاهش محصول بیش از صد درصد نمایانگر وجود خطاست. درحالی‌که میزان کاهش محصول برآوردی با استفاده از ضرایب اصلاح‌شده از 8 تا 5/57 درصد متغیر می‌باشد. از آنجا مدل تخصیص بهینه منابع آبی مدلی چند هدفه و دارای بیش از یک پاسخ بهینه است که هیچ‌یک بر دیگری برتری نداشته و بر اساس شرایط مدیریتی پاسخ مناسب انتخاب می‌گردد، سه پاسخ از پاسخ‌های بهینه موجود در قالب سه سناریو انتخاب شد تا با شرایط فعلی تخصیص آب مورد مقایسه قرار گیرند. نتایج مدل تخصیص بهینه منابع آبی نشان داد که با وجود تغییرات ناچیز در میزان نسبت درآمد به هزینه، میزان کارایی مصرف آب نسبی حداقل 9 درصد افزایش‌یافته و کاهش حداقل 26 درصدی منابع آب را به دنبال دارد. همچنین سطح کشت به میزان 192، 189 و 182 هکتار به ترتیب در سناریو‌های اول تا سوم افزایش می‌یابد. از طرف دیگر، در سناریوی اول و سوم میزان سود اقتصادی به ترتیب به میزان 5/19 و 7/10 میلیارد ریال نسبت به وضعیت فعلی افزایش می‌یابد، درحالی‌که در سناریوی دوم سود اقتصادی با کاهش 4/8 میلیارد ریالی همراه است.
نتیجه‌گیری: با بهینه‌سازی تخصیص منابع آبی ضمن صرفه‌جویی چشمگیر در آب مصرفی، محصول تولیدی به ازای آب مصرفی و همچنین سود اقتصادی نیز بسته به جواب انتخابی می‌تواند افزایش یابد. همچنین تخصیص بهینه منابع آبی باعث افزایش سطح کشت می‌شود که این به معنای احیاء اراضی آیش است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal allocation of water resources using non-dominated sorting genetic algorithm (case study: Hamidiya irrigation network)

نویسندگان [English]

  • Peyman Kashefi Nezhad 1
  • Abdorrahim Hooshmand 2
  • Saeed Boroomandnasab 3
1 Irrigation and drainage department, water sciences faculty, Shahid Chamran university of Ahvaz, Ahvaz, iran
2 irrigation and drainage, water faculty, ahvaz,iran
3 Professor,Irrigation and drainage department, water science and engineering faculty, Shahid Chamran university of Ahvaz, Ahvaz, Iran
چکیده [English]

Background and objective: Considering the growing limitation of water resources, a plan is needed to be made in order to optimally use water resources, especially in the agricultural sector which uses most of the water resources. A study was conducted which its objective is to optimally allocate water resources to the Hamidiyeh irrigation network cropping pattern in order to make a plan to manage the water resources consumption trend in the Hamidiyeh irrigation network.
Materials and methods: The water year 2015-2016 was divided into 36 periods which consist of 10 days and multi-objective model was created to allocate water resources to each one of 10 day periods in order to maximize the relative water use efficiency and the revenue-cost ratio using a non-dominated sorting genetic algorithm. Furthermore, another optimization model was created to minimize the error in the yield reduction estimation under deficit irrigation application situation using genetic algorithm.
Results: The obtained results of stage wise crop response factors modification model indicated that the estimated values of yield reduction under deficit irrigation application situation using the stage wise crop response factors which were proposed by former studies vary between 16.5 and 195.5 percent. The yield reduction amount of more than 100% shows an estimation error, while the yield reduction estimated using the modified stage wise crop response factors vary between 8 to 59.5 percent. The optimal water resources allocation model is a multi-objective model which has more than one optimal solution that none of them is better that the other, and the suitable solution is chosen based on managerial decision taking. As a result, three solutions were chosen as scenarios to be compared with the current water allocation situation. Results indicated that revenue-cost ratio is slightly changed under optimal water resources allocation, but relative water use efficiency is increased at least by 9%, and water use is reduced at least by 26%. Furthermore, cultivation area is increased by 192,189, and 182 hectares in the first, second, and third scenario, respectively. Net benefit was increased by 19.5 and 10.7 billion Rials in the first and the third scenario, however, it was reduced by 8.4 billion Rials in the second scenario.
Conclusion: The amount of water consumption is considerably reduced and the relative water use efficiency and the cultivated area is increased under optimal water resources allocation which causes reuse of fallow area. Furthermore, net benefit could also be increased depending on the chosen solution.

کلیدواژه‌ها [English]

  • : water management
  • Revenue-cost ratio
  • Water use efficiency
  • Optimization
  • Crop response factors
1.Ahmadianfar, A., Adib, A., Taghian, A., and Haghighi, A. 2016. Optimization operation from storage dams using non-dominated sorting genetic algorithm. J. Irrig. Sci. Engin. 39: 2. 89-100. (In Persian)
2.Akbripour, H., and Masehian, E. 2013. Efficient and Robust Parameter Tuning for Heuristic Algorithms. Inter. J. Ind. Engin. Prod. Res. 24: 2. 143-150.
3.Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration (guidelines for computing crop water requirements). Irrigation and Drainage paper NO.56. Rome, Italy, 174p.
4.Asaadi-Mehrabani, M., Banihabib, M.E., and Roozbahany, A. 2018. Fuzzy linear programming model for the optimization of cropping pattern in Zarrinehroud Basin. Iran-Water Resources Research. 14: 1. 13-24. (In Persian)
5.Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. John wiley and sons, Hoboken, New Jersey, United States, 518p.
6.Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. 2002. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 6: 2. 182-197.
7.Doorenbos, J., and Kassam, A.H. 1979. Yield response to water. Irrigation and Drainage paper No.33. Rome, Italy, 193p.
8.Garg, N.K., and Dadhich, S.M. 2014. A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach. Agricultural Water Management. 137: 68-74.
9.Khashei Siuki, A., Ghahraman, B., and Kouchakzadeh, M. 2013. Application of agriculture water allocation and management by PSO optimization technic (Case study: Nayshabur Plaine). J. Water Soil. 27: 2. 292-303. (In Persian)
10.Lalehzari R., Boroomand Nasab, S., Moazed, H., and Haghighi, A. 2015. Optimal allocation of surface and groundwater resources to cropping pattern in Baghmalek plain by multi-objective planning based on
non-dominated sorting algorithm. Ph.D. Dissertation. Shahid Chamran University of Ahvaz, Ahvaz, Iran. 226p. (In Persian)
11.Mirzaee, S., Shahabi Far, M., and Sharifan, H. 2017. Determining the optimum cropping pattern in Golestan dam irrigation and drainage network using genetic algorithm. J. Irrig. Sci. Engin. 40: 3. 181-190. (In Persian)
12.Reddy, M.J., and Kumar, D.N. 2007. Multi-objective particle swam optimization for generating trade-offs in reservoir operation. Hydrological Processes. 21: 2897-2909.
13.Sadeghi, J., and Akhavan Niaki, S.T. 2015. Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory model with trapezoidal fuzzy demand. Applied soft computing. 30: 567-576.
14.Stewart, J.I., Hagan, R.M., and Pruit, W.O. 1976. Production functions and predicted irrigation programmes for principal crops as required for water resources planning and increased water use efficiency. US Department of Interior, Washington DC, United States, 80p.
15.Tavakoli, A.R., Liaghat, A., and Mahdavi Moghaddam, M. 2012. Water allocation pattern under conjunctive use of advanced management and single irrigation scenarios in rainfed areas. J. Water Res. Agric. 25: 2. 93-106. (In Persian)
16.Zargan, J., and Waez-Mousavi, S.M. 2016. Water crisis in Iran: its intensity, causes and confronting strategies. Ind. J. Sci. Technol. 9: 44. 2-6.