مدل­سازی عملکرد محصول نیشکر با استفاده از مدلی ترکیبی مبتنی بر داده­ های سنجش از دور

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 عضو هیات علمی گروه سنجش از دور و GIS دانشکده جغرافیا دانشگاه تهران

2 دانشجوی کارشناسی ارشد مهندسی منابع آب، دانشگاه ملایر

3 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه اراک

4 رئیس اداره آبیاری و زهکشی، موسسه تحقیقات و آموزش نیشکر، شرکت توسعه نیشکر

چکیده

سابقه و هدف: سیاست‌گذاران و مدیران، برای تدبیر استراتژی‌های مناسب مدیریتی، شامل قیمت محصول و بازار محصولات در امر واردات و صادرات، نیاز به اطلاعاتی در مورد عملکرد حاصله از محصولات کشاورزی در مقیاس‌های مختلف دارند، اما همواره تخمین میزان عملکرد محصول با توجه به عدم اطلاعات کافی زمینی امری بسیار سخت و هزینه‌بر بوده است. مناسب‌ترین راه، استفاده از داده‌های ماهواره‌ای و تکنیک سنجش از دور می‌باشد. تحقیق حاضر با هدف برآورد عملکرد محصول نیشکر با بکارگیری تصاویر ماهواره‌ای لندست 8 انجام شد.
مواد و روش‌ها: در‌ ‌این پژوهش، یک مدل ترکیبی برای برآورد حجم محصول نیشکر استفاده شد. این مدل ترکیبی شامل مدل مانتیث برای محاسبه تابش فعال فتوسنتزی جذب ‌شده، مدل استنفورد برای تعیین راندمان مصرف نور و الگوریتم بیلان انرژی سطح زمین (سبال) برای توصیف تغییرات مکانی-زمانی سطح زمین می‌باشد. نقشه‌ی عملکرد محصول از اجرای این الگوریتم در سال 1392 و با بکارگیری 10 تصویر ماهواره‌ای لندست هشت بدست آمد. در الگوریتم سبال همه اجزای بیلان انرژی شامل تابش خالص، شار گرمای خاک، شار گرمای محسوس از تصاویر ماهواره‌ای محاسبه و در تهایت کسر تبخیر بر اساس معادله بیلان انرژی در سطح بدست آمد. برای برآورد ماده خشک تولیدی با توجه به تاریخ و تعداد تصاویر، تابش فعال فتوسنتزی در 10 بازه‌‌ی زمانی محاسبه شد. هر تصویر نماینده یک بازه زمانی گسسته است. در این تحقیق تمام اجزای این مدل ترکیبی برای همه تصاویر موجود در بازه زمانی دوره اصلی رشد محصول نیشکر محاسبه شد و در نهایت اقدام به تهیه نقشه عملکرد محصول برای این منطقه گردید.
یافته‌ها: متوسط عملکرد محصول نیشکر در طول دوره رشد 56 تن در هکتار برآورد شد. میزان عملکرد برآورد ‌شده با این مدل ترکیبی، همبستگی و پراکنش خوبی با عملکرد واقعی مزارع نشان داد(83/0=R2). سپس تأثیرات سن و رقم بر میزان دقت مدل در برآورد عملکرد نیشکر مورد بررسی قرار گرفت. مشخص شد از بین رقم‌های مختلف، مقادیر عملکرد محاسبه شده در مزارع تحت کشت رقم614 -CP57 به علت زودرس بودن و تطابق بهتر با آخرین تصویر، همبستگی بالاتری با مقادیر واقعی عملکرد دارد. همچنین مشاهده ‌شد با افزایش سن‌های مختلف نیشکر از کشت تا بازرویی چهارم هم عملکرد کاهش یافته و هم میزان عمکرد برآورد‌شده، همبستگی و پراکنش کمتری نسبت عملکرد واقعی نیشکر پیدا می‌کند و مقدار همبستگی تا 51/0 کاهش می‌یابد.
نتیجه‌گیری: نتایج حاصل از ارزیابی داده‌های عملکرد محصول و رقم‌های کشت ‌شده نشان دهنده این موضوع بود که عملکرد محصول نیشکر در رقمCP57-614 نسبت به رقم CP69-1062 بالاتر می‌باشد و هم‌چنین تطابق بهتری با مدل ارائه شده نشان می‌داد. هم‌چنین مشاهده شد با افزایش سن‌های مختلف نیشکر از کشت تا بازرویی چهارم هم عملکرد کاهش یافته و هم میزان عملکرد برآورد شده، همبستگی و پراکنش کمتری نسبت عملکرد واقعی نیشکر پیدا می‌کند و مقدار R^2کاهش می‌یابد و میزان خطا نیز افزایش پیدا می‌کند

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the sugarcane crop yield by using a composite model based on remote sensing data

نویسندگان [English]

  • Saeid Hamzeh 1
  • Mohammad Mehdi Valashjerdi 2
  • Mahnoush Moghadasi 3
  • Ali Shini Dashtgol 4
1
2
3
4
چکیده [English]

The growing world population needs more food, with less water available for agriculture. This pinching situation can only improve if water is managed more effectively leading to increased crop yield per unit of water consumed. Crop yield is the ultimate indicator for describing agricultural response to water resources management. The need to monitor crop growth and assess the relationships between crop yield and hydrological processes is elementary for improving the productivity of water. Crop yield forecasts a few months before harvest can be of paramount importance for timely initiating food trade secure the national demand and timely organize food transport within countries. Managers and policy markers need information about agricultural products yield at different scales for devise suitable management strategies. These strategies include product prices and market in import or export. But always estimating crop yield due to the lack of sufficient ground information and existing problems was very difficult and costly. The most appropriate strategies are using satellite data and remote sensing. This study was conducted to evaluate the sugarcane crop yield using landsat 8 satellite data in 2013.
In this study a composite model was used to estimate the volume of sugarcane crop. This combined model includes Monteith model, Carnegie Institution Stanford model and the surface energy balance algorithm for land (SEBAL). Monteith’s model is used for the calculation of absorbed photosynthetically active radiation (APAR), the Carnegie Institution Stanford model is used for determining the light use efficiency, and the surface energy balance algorithm for land (SEBAL) is used to describe the spatio _ temporal variability in land wetness conditions. The new model requires a crop identification map and some standard meteorological measurements as inputs. In surface energy balance algorithm for land (SEBAL) method, all fluxes of the energy balance at the earth's surface including net radiation, soil heat flux, and sensible heat flux are calculated from satellite images and finally evaporative fraction is computed based on the energy balance at the earth's surface. The accumulation of biomass is according to the Monteith model proportional to accumulated APAR. Yield mapping was conducted with the implementation of this algorithm in 2013 and with the usage of 10 landsat 8 satellite images. The biomass development and crop yield computations have been executed in a GIS environment. The annual cycle has been split up into 10 discrete intervals to comply with the 10 Landsat 8 images. The time step varies, depending on cloudiness, and is 16 days on average. Each image is representative for a discrete time interval. All­ calculations are repeated for 10 different Intervals in an independent manner. The total biomass development of a crop lifetime is approximated by integrating the biomass growth over the cropping season using the cropping calendar.
The yield obtained from satellite images was compared and eraluated with the actual measured yield product in the to sugarcane field. Average sugarcane crop yield estimated to 56 tons per hectare. The yield estimation by the composite model revealed correlation and good distribution of farms actual yield. Then the effect of age and varieties on the model accuracy rate for sugarcane yield estimating was examined. It was found among the different varieties, calculated yield in the varieties cultivated fields CP57- 614 have correlation with the yield actual volues that is due to prematurity and better match to the last image. It was also observed with the aging of sugarcane cultivation until the fourth raton, yield dropped, the estimated yield decreased, solidarity and distribution becomes less that the sugarcane actual yield and correlation value is reduced to %51.

کلیدواژه‌ها [English]

  • Energy balance
  • Monteith model
  • Sugarcane
  • Age
  • Cultivar
1.Ahmad, M.D., Turral, H., and Nazeer, A. 2009. Diagnosing irrigation performance and water productivity through Satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agricultural Water Management. 96: 551-564.
2.Ahmad, M.D., Masih, I., and Turral, H. 2004. Diagnostic analysis of spatial and temporal variations in crop water productivity: a field scale analysis of the rice–wheat cropping system of Punjab, Pakistan. J. Appl. Irrig. Sci. 39: 1. 43-63.
3.Anup, K. 2005. Crop yield estimation model for Iowa using remote sensing and surface parameters. Inter. J. Appl. Earth Observ. Geo Inf. 8: 26-33.
4.Asrar, G., Fuchs, M., Kanemasu, E.T., and Hatfield, J.L. 1984. Estimating absorbed synthetically active radiation and leaf area index from spectral reflectance in photo wheat. Agron. J. 76: 300-306.
5.Bastiaanssen, W.G.M., Ahmad, M.D., and Chemin, Y. 2002. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research. 38: 12. 9-1.
6.Bastiaanssen, W.G.M., and Ali, S. 2002. A new crop yield forecasting model based on satellite easurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment. 94: 321-340.
7.Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., and Holtslag, A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 212: 198-212.
8.Cai, X.L., and Sharma, B.R. 2010. Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin. Agricultural Water Management. 97: 309-316.
9.Ferencz, Cs., Bognar, P., Lichtenberger, J., Hamar, D., Tarcsai, Gy., Timar, G., and Molnar, G. 2004. Crop yield estimation by satellite remote sensing. Inter. J. Rem. Sens. 25: 20. 4113-4149.
10.Field, C.B., Randerson, J.T., and Malmstrom, C.M. 1995. Global net primary production: combining ecology and remote sensing. Remote sensing of Environment. 51: 1. 74-88.
11.Frouin, R., and Pinker, R.T. 1995. estimating photo synthetically active radiation (PAR) at the earth’s surface from satellite observations. Remote sensing of Environment. 51: 98-107.
12.Hamar, D., Ferencz, C., Lichtenberger, J., and Tarcsai, G. 1996. Yield estimation for corn and wheat in the Hungarian Great Plain using Landsat MSS data. Inter. J. Rem. Sens. 17: 9. 1689-1699.
13.Hatfield, J.L., Asrar, G., and Kanemasu, E.T. 1984. Intercepted photo synthetically active radiation estimated by spectral reflectance. Remote sensing of Environment. 14: 65-75.
14.Hayes, M.J., and Decker, W.L. 1996. Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. Inter. J. Rem. Sens. 17: 3189-3200.
15.Hutchison, C.F., Huete, A., and Petersen, M.S. 2000. Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground based ancillary data. Inter. J. Rem. Sens. 21: 18. 3487-3508.
16.Lobell, B. 2002. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agriculture. Ecosystems and Environment. 94: 205-220.
17.Monteith, J.L. 1977. Climate and the efficiency of crop production in Britain. Phil.Trans. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281: 980. 277-294.
18.Monteith, J.L. 1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9: 3. 747-766.
19.Moran, M.S., Maas, S.J., and Pinter, P.J. 1995. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sensing Reviews.12: 335-353.
20.Richards, R.A., and Townley-Smith, T.F. 1987. Variation in leaf area development and its effect on water use, yield and harvest index of drought wheat. Austr. J. Agric. Res. 38: 6. 983-992.
21.Sawasawa, A.L. 2003 Crop Yield Estimation: Integrating RS, GIS, Management and Land factors.MSc thesis, University of Amestherdam, ITC.
22.Serrano, L., Fillela, I., and Penuelas, J. 2000. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop science. 40: 3. 723-731.
23.Sugita, M. 1992. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophysic. Res. Atm. 97: 17. 18377-18382.
24.Tonajbook of Sugarcane Agro-Industry Company, 1392.
25.Tucker, C.J. 1979. Red and photographic infrared linear combination for monitoring vegetation. Remote sensing of Environment. 8: 127-150.