تعیین سیاست بهینه بهره‌برداری از مخزن به صورت چندهدفه در راستای توسعه پایدار

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه مهندسی عمران دانشگاه بیرجند

2 دانشگاه بیرجند استادیار گروه مهندسی عمران

3 گروه عمران دانشگاه علم و صنعت ایران

چکیده

سابقه و هدف : مسائل بهره‌برداری از مخزن دارای اهداف مختلف و متنوع هستند که به ندرت منتهی به یک جواب بهینه می‌شوند و معمولاً در آن‌ها مجموعه‌ای از جواب‌های بهینه (پارتو) موجود است. حل مسائل فوق در گذشته تنها با کاربرد روش‌های ساده کننده میسر بوده است که از آن جمله می‌توان به استفاده از ضرایب وزنی برای اهداف مختلف و تبدیل آن‌ها به یک تابع هدف استفاده کرد. اما در سال‌های اخیر با توسعه الگوریتم‌های چند هدفه تکامل-گرا، ابزار مناسبی برای حل آن‌ها فراهم شده است. در این راستا، هدف پژوهش حاضر، بررسی کاراِیی الگوریتم‌های بهینه‌سازی چندهدفه MOPSO، SPEA-II و NSGA-II در مسئله بهره‌برداری بهینه از مخزن با استفاده از مدل-های بهره‌برداری LDR، N-LDR جهت تولید پاسخ‌های بهینه پارتو در راستای توسعه پایدار و مقایسه نتایج با سیاست بهره‌برداری SOP است.
مواد و روش‌ها: جهت نیل به هدف مذکور، ابتدا روش‌های بهینه‌سازیNSGA-II , MOPSO و SPEA-II برای هر یک از توابع استاندارد خانواده ZDT با شرایط یکسان (تعداد جمعیت و تعداد اجرا برابر) مورد ارزیابی قرار گرفتند. پس از ارزیابی روش‌های بهینه‌سازی چندهدفه با استفاده از توابع استاندارد خانواده ZDT، مدل‌های بهره-برداری از مخزن LDR ،NLDR و SOP در محیط برنامه نویسی MATLAB کدنویسی شده و با روش‌های بهینه-سازی چندهدفه تلفیق گردیدند. برای هر یک از دو مدل شبیه‌سازی-بهینه‌سازی (LDR و NLDR) دو تابع هدف بدین شرح تعریف گردید، تابع هدف اول کمینه‌سازی مجموع درصد کمبودهای برآورد نشده و تابع هدف دوم بیشینه‌سازی اعتمادپذیری که بیشینه آن در شرایط بهره‌برداری SOP حاصل می‌گردد. مدل‌های بهره برداری از مخزن برای یک دوره 37 ساله از سال 1356 تا 1392، جهت یافتن ضرایب مربوطه در هر دو مدل خطی و غیر خطی، در شرایط یکسان برای هر یک از الگوریتم‌های بهینه‌سازی چند هدفه به تعداد 5000 تکرار اجرا گردید و جبهه پارتو بهینه حاصل شد.
یافته‌ها: با بررسی نتایج حاصله مشاهده شد روش SPEA-II در مدل بهره‌برداری NLDR به نتایج مناسب‌تری دست یافته است لذا از میان پاسخ‌های جبهه پارتوی بهینه حاصله از این روش، سه پاسخ به عنوان نمونه (با استفاده از معیارهای مختلف) انتخاب گردید و شاخص‌های اعتمادپذیری، برگشت‌پذیری، آسیب پذیری و MSI برای سه پاسخ مذکور محاسبه شد. با مقایسه مقادیر توابع هدف و سایر معیارهای توسعه پایدار در پاسخ NLDR-C و شرایط SOP می‌توان مشاهده نمود با بکارگیری مدل بهینه‌سازی چندهدفه می‌توان با میزان کمبود کمتر (MSI 76/21 نسبت به 32/26) تقریبا به ماکزیمم اعتمادپذیری (اعتماد پذیری در شرایط SOP) دست یافت. حال آن‌که در پاسخ NLDR-A کمترین میزان کمبود (MSI برابر 02/13) به نسبت سایر پاسخ‌های نمونه و سیاست SOP به چشم می‌خورد.
نتیجه‌گیری: با توجه به یافته‌های تحقیق مشاهده شد روش بهینه‌سازی SPEA-II در تمامی توابع استاندارد خانواده ZDT به جبهه پارتوی مطلوب‌تری نسبت به سایر روش‌های بهینه‌سازی دست‌ یافته است. همچنین این روش در مقایسه با سایر روش‌های بهینه‌سازی دارای جبهه کامل‌تری از جواب‌های پارتو می‌باشد که این امر نشان از کارایی این روش بهینه‌سازی در مسائل بهینه‌سازی چند هدفه دارد. همچنین در رابطه با مدل‌های بهره‌برداری LDR و NLDR با تعداد تکرار یکسان، مشاهده شد مدل بهره‌برداری غیرخطی نتایج بهتری از خود نشان داده است که این امر می‌تواند به دلیل درجه آزادی بیشتر رابطه غیرخطی در تعیین منحنی فرمان رهاسازی مخزن سد باشد. در این تحقیق مجموعه‌ای از جواب‌های بهینه (بهینه پارتو) جهت برآورده نمودن اهداف مذکور ارائه گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Sustainable Reservoir Operation Using Multi-Objective Optimization Methods

نویسندگان [English]

  • Seyyed Younes Hoseini 1
  • Mehdi Naseri 2
  • Sadegh Sadeghi Tabas 3
1 Department of Civil Engineering, University of Birjand
2 University of Birjand Assistant Professor, Department of Civil Engineering
3 Department of Civil Engineering, Iran University of Science and Technology
چکیده [English]

Abstract
Background and Objectives: Reservoirs operation problems have various and diverse objectives that rarely lead to a global optimized answer, and usually there are a set of optimal answers (Pareto Front). Solving these problems in the past has been possible only with the use of simpler methods, including the use of weight coefficients for various purposes and the conversion of them into a just one objective function. But in recent years, with the development of multi-objective methods, there is a good way to solve them. In this regard, the purpose of the present study was to investigate the efficiency of multi-objective optimization algorithms MOPSO, SPEA-II and NSGA-II in the reservoir operation problem using LDR, N-LDR operation models to generate the optimal Pareto front in order to sustainable development.
Materials and Methods: In order to obtain the mentioned purpose, First, the NSGA-II, MOPSO, and SPEA-II optimization methods were evaluated using some benchmark problems such as standard ZDT family functions with identical conditions (equal population number and number of runs). After evaluating multi-objective optimization methods using standard ZDT family functions, NLDR, LDR and SOP operation models were coded in MATLAB programming environment and linked with multi-objective optimization methods. For each of the two optimization-simulation models (LDR and NLDR), the two objective functions were defined as follows: the first objective function was to minimize the sum of the MSI and the second objective function was the reliability maximization that the maximum of which is usually obtained under the SOP operation conditions. It turns out the two aforementioned objective functions are have a reverse relationship with each other and by increasing one of them, the other one will decrease. Reservoir operation models for a 37-year period from 1356 to 1392 were executed to find the coefficients in both linear and nonlinear models in the same conditions for each multi-objective optimization algorithm with 5000 itrations. The optimal Pareto front was obtained.
Results: By addressing obtained results, It was observed the SPEA-II optimization method in NLDR operation model, has reached to the best optimal Pareto front among others. So from its three answers were selected (by using various criteria) as sample and then sustainability indices such as reliability, resilience, vulnerability and MSI were computed for those three answers. By comparing the values of objective functions and other sustainable development criteria in SOP conditions and the NLDR-C response, it can be seen that using the multi-objective optimization model, we can by less shortages (less MSI 21, 79 compared to 32, 29), reach to approximately maximum reliability (reliability in SOP conditions). However in NLDR-A solution, the least shortage (MSI equal to 13.02) can be seen compare to other sample solutions and SOP policy.
Conclusion: Due to research findings, it was observed the SPEA-II optimization method in all of the standard ZDT family functions has reached to a more optimal Pareto front than other optimization methods. Also this method compared to other optimization methods, has a more complete front of Pareto's solutions, which indicates the efficiency of this optimization method in multi-objective optimization problems. In the case of LDR and NLDR models with the same number of iterations, also It was observed that the NLDR model has shown better results, which can be due to the higher degree of freedom of nonlinear relationship in determining the operation policy of the reservoir releasing. In this research, a series of optimal (Pareto optimal) solutions was presented to meet the stated objectives.

کلیدواژه‌ها [English]

  • Keywords: Optimal operation policy
  • Multi Objective Optimization
  • Nahrain Dam
  • Sustainable development
1.Ahmadianfar, I., Adib, A., and Taghian, M. 2016. Optimization of fuzzified hedging rules for multipurpose and multireservoir systems. J. Hydrol. Engin. 21: 4.
2.Azadnia, A., and Zahraei, B. 2010. Application of particle swarm optimization in multipurpose reservoir operation. 5th National Congress on Civil Engineering, Ferdowsi University of Mashhan. (In Persian)
3.Azaranfar, A., and Shahsavari, M. 2007. Application of different optimization models in reservoir operation rule curve. 2nd Conference on Water Resources Management, Isfahan University of Technology, Isfahan.
4.Baltar, A.M., and Fontane, D.G. 2008. Use of Multiobjective Particle Swarm Optimization in Water Resources Management. ASCE J. Water Resour. Plan. Manage. 134: 5. 275-265.
5.Bower, B.T., Hufschmidt, M.M., and Reedy, W.W. 1962. Operating Procedures: Their Role in the Design of Water-Resource Systems by Simulation Analyses, Design of Water Resourse Systems. Harvard University Press, Cambridge, Mass.
6.Chang, J.F., Chen, L., and Chang, C.L. 2005. Optimizing reservoir operating rule curves by genetic algorithms. Hydrological Processes. 19: 2277-2289.
7.Coello, C.A.C., Pulido, G.T., and Lechuga, M.S. 2004. Handling multiple objectives with particle swarm.
8.Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. 2000. A fast elitist non-dominated sorting genetic algorithm for multi objective optimization: NSGA-II. Indian Institute of Technology, Kanpur, India.
9.Emadi, A.R., Ghaderi, K., Mohseni Movahed, S.A.A., and Soleimani, A. 2009. Evaluation of Water supply reliability in reservoir dams by standard operation policy. The First National Conference on Engineering and Management of Infrastructures. Tehran University, Tehran. (In Persian)
10.Fallah-Mehdipour, E., Bozorg Haddad, O., and Mariño, M.A. 2011. MOPSO algorithm and its application in multipurpose multireservoir operations. J. Hydroinform. 13: 4. 794-811.
11.Ghimire, B.N., and Reddy, M.J. 2013. Optimal reservoir operation for hydropower production using particle swarm optimization and sustainability analysis of hydropower. ISH J. Hydr. Engin. 19: 3. 196-210.
12.Gill, M., Kaheil, K., Khalil, Y.H., McKee, A., and Bastidas, L. 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resource Research. 42: 7.
13.Hashimoto, T., Stendinger, J.R., and Loucks, D.P. 1982. Reliability, Resiliency and Vulnerability Criteria for Water Resources System Performance Evaluation. Water Resources Research. 18: 1. 14-20.
14.Hsu, N.S., and Cheng, K.W. 2002. Network flow optimization model for basin-scale water supply planning. Water Resource Planning and Management. 128: 2. 102-112.
15.Karamouz, M., and Houck, M.H. 1982. Annual and monthly reservoir operating rules. Water Resources Research. 18: 5. 1337-1344.
16.Khalaf, R., and Shokrollahi, A. 2008. Reservoir operation rule curve of Balarood dam using yield model and simulation technique. 2nd National Conference on Dam and Hydropower, Tehran. (In Persian)
17.Liu, Y. 2009. Automatic calibration of a rainfall-runoff model using a fast and elitist multi-objective particle swarm algorithm Expert Systems with Applications. 36: 9533-9538.
18.Louks, D.P., Stedinger, J.R., and Haith, D.A. 1981. Water Resource Systems Learning and Analysis. Prentice-Hall, Englewood Cliffs, N. J.
19.Moy, W.S., Cohon, J.L., and Revelle, C.S. 1986. A programming model for analysis of the reliability, resilience and vulnerability of a water supply reservoir. J. Water Resour. Res. 22: 4. 489-498.
20.Oliveira, R., and Loucks, D. 1997. Operating rules for multi-reservoir systems. Water Resource Research.
33: 4. 839-852.
21.Parsopoulos, K.E., and Vrahatis, M.N. 2002. Particle swarm optimization method in multi objective problems. Proceedings of the 2002 ACM Symposium on Applied Computing, Madraid, Spain. Pp: 603-607.
22.Reddy, M.J., and Kumar, D.N. 2007. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes. 21: 2897-2909.
23.Sadeghi Tabas, S., Pourreza Bilondi, M., and Taghian, M. 2015. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms. J. Water Wastewater (Parallel title). Ab va Fazilab. 26: 5. 14-22. (In Persian)
25.Tabari, M.M.R., Maknoon, R., and Ebadi, T. 2012. Development Structure for Optimal Long-Term Planning in Conjunctive Use. J. Water Wastewater. 23: 84. 56-69.
26.Tabari, M.M.R., and Soltani, J. 2013. Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models. Water resources management. 27: 1. 37-53.
27.Tu, M.Y., Hsu, N.S., Tsai, F.T.C., and Yeh, W.W.G. 2008. Optimization of hedging rules for reservoir operations. Water Resource Planning and Management. 134: 1. 3-13.