ارائه یک رویکرد برنامه ریزی ریاضی برای بهینه سازی مساله برنامه ریزی کاشت محصولات کشاورزی تحت شرایط عدم قطعیت عدد زی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد لجستیک و زنجیره تامین دانشگاه علم و صنعت ایران

2 استادیار دانشکده صنایع دانشگاه علم و صنعت ایران

3 دانشجوی دکتری مهندسی صنایع صنایع دانشگاه علم و صنعت ایران

چکیده

سابقه و هدف: کشاورزی به عنوان یکی از منابع اصلی ثروت در اقتصاد به شمار می‌رود. بنابراین کشورهای در حال توسعه برای برون رفت از بحرانهای اقتصادی و به دلیل نقش به سزایی که این بخش در تامین غذا، رفاه جامعه و در نهایت رشد اقتصاد ملی ایفا می‌کند، آن را سر لوحه برنامه های اقتصادی خود قرار می‌دهند. مدیریت و برنامه‌ریزی در خصوص منابع آب کشاورزی بسیار حیاتی است. در این پژوهش، علاوه بر تولید محصول به جنبه واردات آن هم توجه شده است. هدف این پژوهش بررسی ظرفیت زمین برای کاشت و منابع موجود برای تولید محصول می باشد تا از این طریق بتوان در راستای بهبود شرایط اقتصادی و اجتماعی کشاورزان در کشور گام برداشت.
مواد و روش‌ها: در این پژوهش داده های مورد مطالعه برگرفته از گزارشات مستند از وزارت جهاد کشاورزی و کمیته ملی آبیاری و زهکشی ایران است. در این مطالعه ابتدا یک مدل ریاضی جامع ارائه داده شد که اهدافی نظیر کاهش میزان آب مصرفی، افزایش تولید محصولات استراتژیک و توجه به عوامل اجتماعی همچون اشتغال نیروهای محلی را در نظر گرفته است. در واقع، می‌توان تعیین نمود که چه میزان آب برای تولید چه محصولی بایستی اختصاص یابد تا هم از لحاظ مدیریت جامع منابع آب مفید باشد و هم کشاورزان سود بیشتری داشته باشند. به‌طور عمومی ذات مسائل تصمیم در دنیای واقعی دارای عدم قطعیت می‌باشد و یافتن جواب بهینه و درست بدون توجه به این موضوع موجب تصمیم گیری غیر واقعی خواهد شد. اگر چه رویکرد تصمیم گیری فازی می تواند بسیاری از شرایط غیر قطعی مساله را در نظر بگیرد، اما این رویکرد دارای محدودیتهای کاربردی می باشد و در بعضی از شرایط ممکن است نتواند عدم قطعیت موجود در دنیای واقعی را بخوبی ترسیم نماید. بر همین اساس، مفهوم جدیدی از عدم قطعیت با عنوان عدد زی مورد استفاده قرار می گیرد. همچنین، برای حل مسئله چند هدفه از یک رویکرد چند هدفه تعاملی استفاده شده است. روش مورد استفاده در این پژوهش برنامه ریزی ریاضی خطی است و با نرم افزار سیپلکس حل شده است.
یافته‌ها: در کشور الگوی کشت محصولات کشاورزی بر مبنای نیاز منطقه‌ای، وضعیت ذخایر آبی و میزان صادرات وجود ندارد و این مسئله نه‌تنها هدر رفت منابع آبی را به دنبال داشته که باعث کاهش بهره‌وری و زیان کشاورزان شده است. بدون تبعیت از برنامه خاصی، نوسان شدید قیمت محصولات کشاورزی در بازار مصرف وجود دارد. با توجه به استراتژیک در نظر گرفته شدن برخی محصولات کشاورزی مانند گندم، یونجه و جو در تحقیق حاضر، میزان تولید این محصولات نسبت سایر محصولات بیشتر است. در 22% از حجم زمین مورد نظر محصولی کاشت نخواهد شد و این امر به عواملی همچون منابع مورد نیاز برای کاشت و همچنین به صرفه بودن کاشت نسبت به واردات آن بستگی دارد.
نتیجه‌گیری: نتایج بدست آمده نشان میدهد که برای مدل، استراتژیک بودن محصولات کشاورزی از اهمیت بالا و میزان تولید آنها از اولویت بیشتری برخوردار است. این پژوهش با توجه به آمار وزارت کشاورزی در سال 1393، 18/61% سهم کل محصولات کشاورزی را پوشش می‌دهد که این رقم در مقایسه با مقالات قبل بسیار رقم چشم‌گیری است. از طرفی تحلیل نتایج بدست آمده بر اساس رویکرد عدد زی بیانگر ارائه یک جواب محافظ کارانه نسبت به سایر روش های رویکرد فازی و قطعی است.

کلیدواژه‌ها


عنوان مقاله [English]

A multi objective mathematical modeling for crop planning problem under Z-number uncertainty

نویسندگان [English]

  • Ahmad Ali Abedinpour 1
  • Armin Jabbarzadeh 2
  • Mohsen Yahyaei 3
1 Iran University of Science and Technology
2 assistant professor- Iran University of Science and Technology
3 Iran University of Science and Technology
چکیده [English]

Background and Objectives: Agriculture is considered as one of the main sources of wealth in the economy. Because of its significant role in providing food, social welfare and economic growth, developing countries should keep it at the forefront of their economic plans to overcome the economic crisis. Management and planning of agricultural water resources are strategically vital. In this research, both cropping and import aspects of the products have been considered. The aim of this research is to study of land capability and existed resources for agriculture production so that it improves the economic and social conditions of the farmers in country.
Materials and Methods: In this study, the data are collected from documented reports of the ministry of agricultural Jihad and the Iranian National Irrigation and Drainage Committee. A comprehensive mathematical model is presented that it aims to reduce the amount of water consumed, increase the production of strategic products, and consider the social factors such as the employment of local laborers. In fact, it is possible to determine how much water can be allocated and which product should be cropped so that both water resource management, and profitability is being guaranteed for farmers. Generally speaking, the nature of decision-making in the real world is uncertain, and finding a solution without regard to this issue will make the decision unrealistic. Fuzzy decision approach can be applied to tackle uncertainty in many problems, but this approach has its practical limitations, and in some circumstances, it may not be able to model the uncertainty accurately. Accordingly, we use a new concept of uncertainty which is called as the Z-number. To optimize multiple objectives, an interactive approach has been applied. The proposed mathematical model is linear one and is solved by Cplex software.
Results: In the country, there are no agricultural cropping patterns based on regional needs, the status of water resources and exports. This matter not only leads to the loss of water resources, but also have a significant impact on farmers' productivity losses and without a specific program, there may be a sharp price fluctuation of agricultural products in markets. Considering the strategic aspects of some agricultural products such as wheat, alfalfa and barley in the presented study, the production rate of these products is higher than other ones. Results show that the products will not be planted in 22% area of the land, and this is because the limitation of resources for planting or the import may be cost-effectiveness rather than planting.
Conclusion: The results show that in the proposed model, the strategic importance of agricultural products directly effects on the amount of production of them. According to the statistics of the Ministry of Agriculture in 2014, 61.18% of the total agricultural products are covered in this research. The obtained results show that decision making based on the Z-number approach provides a conservatism solution rather than fuzzy and deterministic approaches.

کلیدواژه‌ها [English]

  • Crop planning
  • Uncertainty
  • Z-number
  • Water management
  • Multi-objective programming
1.Adeyemo, J., and Otieno, F. 2010. Differential evolution algorithm for solving multi-objective crop planning model. Agric. Water Manag. 97: 6. 848-856.
2.Arab, E., Purasghar Sangachin, F., and Nasrabadi, T. 2013. Investigating the flow of virtual water in Iran’s major agricultural products and providing a solution for optimizing net flow of water. University of Tehran. 32: 123-150.(In Persian)
3.Azadeh, A., and Kokabi, R. 2016. Z-number DEA: A new possibilistic DEA in the context of Z-numbers. Adv. Eng. Informatics. 30: 3. 604-617.
4.Babuye Moghadam, M., and Saedlu, H. 1983. Iranian Agriculture in the 1966-76. University of Tehran. 25: 88-103. (In Persian)
5.Bafkar, A., Farhadi Bansouleh, B., and Boroomandnasab, S. 2017. Optimization of water use in agriculture using the results of a crop growth simulation model (WOFOST) (Case study: Mahidasht-Kuzaran, ermanshah Province). J. Water Soil Conserv. 23: 6. 301-315. (In Persian)
6.Dadgar, L., Adibi, H., and Amini, A. 2008. Review of government support policies in the production and consumption of agricultural products and their results in 1335-1352. University of Tehran. 61: 534-551. (In Persian)
7.Dasturani, M., Tavili, A., Zehtabian, G., and Seyed-Seragi, H. 2010. Criteria and Indicators of Agriculture in Sustainable Development. University of Tehran. 72: 512-529. (In Persian)
8.Eyupoglu, S.Z., Jabbarova, K.I., and Aliyeva, K.R. 2017. The Identification of Job Satisfaction under Z-Information,” Intell. Autom. Soft Comput., vol. 8587, no. October, Pp: 1-5.
9.Flavell, R.B. 2017. Innovations continuously enhance crop breeding and demand new strategic planning. Glob. Food Sec. 12: 15-21. (In Persian)
10.Gupta, A.P., Harboe, R., and Tabucanon, M.T. 2000. Fuzzy multiple-criteria decision making for crop area planning in Narmada river basin. Agric. Syst. 63: 1. 1-18.
11.Hatefi, S.M., Jolai, F., Torabi, S.A., and Tavakkoli-Moghaddam, R. 2014. Reliable Design of an Integrated Forward-Revere Logistics Network under Uncertainty and Facility Disruptions: A Fuzzy Possibilistic rograming Model. KSCE J. Civ. Eng. 00: 1. 1-12.
12.Hoseininam, Feizi, and Khakzand. 2015. Designing a Center for Organic Food Production in Tehran Using the Urban Agriculture Approach to Ensure Food Security. University of Tehran. 48: 348-362. (In Persian)
13.Hu, Z., Wei, C., Yao, L., Li, C., Zeng, Z., and Asce, A.M. 2015. Integrating Equality and Stability to Resolve Water Allocation Issues with a Multiobjective Bilevel Programming Model. Water Resour. Plann. Manag. 142: 7.
14.Itoh, T., Ishii, H., and Nanseki, T. 2003. A model of crop planning under uncertainty in agricultural management. 3: 3. 1-15.
15.Jiménez, M., Arenas, M., Bilbao, A., and Rodríguez, M.V. 2007. Linear programming with fuzzy parameters: An interactive method resolution. Eur. J. Oper. Res. 177: 3. 1599-1609.
16.Kermani, M., Périn Levasseur, Z., Benali, M., Savulescu, L., and Maréchal, F. 2016. A novel MILP approach for simultaneous optimization of water and energy: Application to a Canadian softwood Kraft pulping mill. Comput. Chem. Eng. 102: 238-257.
17.Kiani, Z., Montazer, A.A., and Mashal, M. 2012. Investigating the Effect of Integrated Approach and Optimal Distribution of Water in Different Irrigation Network Areas in Improving Agricultural Water Utilization. 12: 86-97. (In Persian)
18.Liu, J., Li, Y.P., Huang, G.H., Zhuang, X.W., and Fu, H.Y. 2017. Assessment of uncertainty effects on crop planning and irrigation water supply using a Monte Carlo simulation based dual-interval stochastic programming method. J. Clean. Prod. 149: 945-967.
 19.Molinos Senante, M., Hernández Sancho, F., Mocholí Arce, M., and Sala Garrido, R. 2014. A management and optimisation model for water supply planning in water deficit areas. J. Hydrol. 515: 139-146.
20.Monajemi, E., and Rashedmahsal, M.T. 1992. The Importance of Agriculture, Water and Plant in Ancient Iran. University of Tehran. 5: 32-51. (In Persian)
21.Naderi, M.J., Pishvaee, M.S., and Ali ahmadi, A. 2016. Designing a water supply and sewage collection system under uncertainty. Iran University of Science and Technology. 72: 305-322. (In Persian)
22.Niu, G., Li, Y.P., Huang, G.H., Liu, J., and Fan, Y.R. 2016. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. Agric. Water Manag. 166: 53-69.
23.Qiu, D., Dong, R., Chen, S., and Li, A. 2017. On an Optimization Method Based on Z-Numbers and the Multi-Objective Evolutionary Algorithm. Intell. Autom. Soft Comput. 24: 1.
24.Radulovich, R. 1987. AQUA, a model
to evaluate water deficits and excesses in tropical cropping. Part I. Basic assumptions and yield. Agric. For. Meteorol. 40: 4. 305-321.
25.Radulovich, R. 1990. AQUA, a model to evaluate water deficits and excesses in tropical cropping. Part II. Basic assumptions and yield. Agric. For. Meteorol. 40: 4. 253-261.
26.Sakawa, M., Yano, H., and Yumine, T. 1987. An Interactive Fuzzy Satisficing Method for Multiobjective Linear-Programming Problems and Its Application. Trans. Syst. MAN, Cybern. 8714520: 654-661.
27.Salazar, M., Fitz, R., and Pérez, S. 2017. Agricultural Production Planning in a Fuzzy Environment. Optim. Dyn. with Their Appl. Pp: 282-293.
28.Santos Pereira, L., Oweis, T., and Zairi, A. 2002. Irrigation management under water scarcity. Agric. Water Manag. no. 57: 175-206.
29.Sarker, R., and Ray, T. 2017. An improved evolutionary algorithm for solving multi-objective crop planning models. Comput. Electron. Agric. 68: 2. 191-199.
30.Sharma, D.K., Ghosh, D., and Alade, J.A. 2006. A fuzzy goal programming approach for regional rural development planning. Appl. Math. Comput. 176: 1. 141-149.
31.Sharma, D.K., Gaur, A., and Ghosh, D. 2008. Goal Programming Model for Agricultural LandAllocation Problems. Int. J. Model. Simul. 28: 1. 43-48.
32.Soroudi, A., and Amraee, T. 2013. Decision making under uncertainty in energy systems: State of the art. Renew. Sustain. Energy Rev. 28: 376-384.
33.Srivastava, P., and Singh, R.M. 2017. Agricultural land allocation for crop planning in a canal command area using fuzzy multiobjective goal programming. J. Irrig. Drain. Eng. 143: 6. 1-9.
34.Torabi, S.A., and Hassini, E. 2008. An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159: 2. 193-214.
35.Toyonaga, T., Itoh, T., and Ishii, H. 2005. A crop planning problem with fuzzy random profit coefficients. Fuzzy Optim. Decis. Mak. 4: 1. 51-69.
36.Yousefi, H., Mohammadi, A., Noorollahi, Y., and Sadatinejad, S. 2017. Water footprint evaluation of Tehran’s crops and garden crops. J. Water Soil Conserv. 24: 6. 67-85. (In Persian)
37.Zadeh, L.A. 1965. Fuzzy sets. Inf. Control. 8: 3. 338-353.
38.Zadeh, L.A. 2011. A Note on Z-numbers. Inf. Sci. (Ny). 181: 2923-2932.
39.Zhang, C., Li, M., and Guo, P. 2017. Two-Stage Stochastic Chance-Constrained Fractional Programming Model for Optimal Agricultural Cultivation Scale in an Arid Area. J. Irrig. Drain. Eng. 143: 9. 1-13.
40. Zhang, C., Li, M., and Guo, P. 2018. An interval multistage joint-probabilistic chance-constrained programming model with left-hand-side randomness for crop area planning under uncertainty. J. Clean. Prod. 167: 1276-1289.
41.Zhang, D., and Guo, P. 2016. Integrated agriculture water management optimization model for water saving potential analysis. Agric. Water Manag. 170: 5-19.
42.Zimmermann, H.J. 1978. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1: 1. 45-55.