شکل‌های شیمیایی روی در ریزوسفر ذرت در دو خاک آلوده با بافت متفاوت تیمارشده با کلات‌کننده‌ها

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار گروه علوم خاک دانشگاه یاسوج

2 دانشگاه شهرکرد

چکیده

سابقه و هدف: فرآیندهای ریزوسفری نقش مهمی در اجزای روی در خاک‌ها دارد. ریشه‌های گیاه توانایی تبدیل اجزای فلزات برای جذب آسان از طریق ترشحات ریشه در ریزوسفر را دارند. در این پژوهش، تأثیر EDTA، اسید سیتریک و عصاره کود مرغی بر جزءبندی روی در ریزوسفر ذرت رقم سینگل کراس 704 در دو خاک آلوده با بافت متفاوت بررسی شد.
مواد و روش‌ها: این تحقیق به‌صورت آزمایش فاکتوریل در قالب طرح کاملأ تصادفی در سه تکرار در شرایط گلخانه‌ای انجام شد و اسید سیتریک و EDTA در سطوح غلظتی صفر، 5/0 و 1 میلی‌مول بر کیلوگرم خاک و عصاره کود مرغی در سطوح غلظتی صفر، 5/0 و 1 گرم بر کیلوگرم خاک استفاده شدند. تعداد سه بذر ذرت در هر ریزوباکس کاشته شد. بعد از 10 هفته گیاهان برداشت شدند و خاک ریزوسفری و توده جدا شدند. کربن آلی محلول (DOC)، کربن بیوماس میکروبی (MBC) و جزءبندی روی در خاک ریزوسفری و توده تعیین شدند.
یافته‌ها: نتایج نشان داد ویژگی‌های خاک ریزوسفری با خاک توده متفاوت بود. در هر دو خاک کربن آلی محلول و کربن بیوماس میکروبی در خاک‌ ریزوسفری به‌صورت معنی‌داری (05/0p≤) از توده خاک‌ بیشتر بود، در حالی‌که pH کاهش معنی‌داری (05/0p≤) در خاک‌ ریزوسفری نسبت به خاک توده یافت. در خاک لوم شنی و لوم رسی میانگین اجزای روی تبادلی و پیوند شده با ماده آلی در خاک ریزوسفری کمتر از توده خاک و میانگین اجزاء روی پیوند شده با اکسیدهای آهن و منگنز، پیوند شده با کربنات‌ها و باقیمانده در خاک ریزوسفری بیشتر از توده خاک بود. در هر دو خاک در خاک‌های ریزوسفری و توده، بیشترین مقادیر روی به‌ترتیب در اجزاء پیوند شده با اکسیدهای آهن و منگنز، باقیمانده، پیوند شده با ماده آلی، پیوند شده با کربنات‌ها و تبادلی بود. در خاک لوم شنی و لوم رسی جذب روی اندام هوایی با روی پیوند شده با اکسیدهای آهن و منگنز (71/0r=) همبستگی معنی‌داری داشت. در خاک لوم شنی در کشت ذرت، بیشترین جذب روی اندام هوایی ذرت در خاک تیمارشده با 1 گرم عصاره کود مرغی بر کیلوگرم مشاهده شد. در خاک لوم رسی بیشترین جذب روی اندام هوایی ذرت در خاک تیمارشده با 5/0 گرم عصاره کود مرغی بر کیلوگرم مشاهده شد. در خاک لوم شنی تیمار 1 میلی‌مول EDTA بر کیلوگرم و در خاک لوم رسی تیمار 1 میلی‌مول اسید سیتریک بر کیلوگرم منجر به آزاد شدن بیشترین غلظت روی در جزء پیوند شده با اکسیدهای آهن و منگنز شد. نتایج مقایسه میانگین‌ها نشان داد میانگین اجزاء روی تبادلی و روی پیوند شده با اکسیدهای آهن و منگنز در خاک لوم شنی به‌صورت معنی‌داری (05/0p≤) بیشتر از خاک لوم رسی بود، در حالی‌که میانگین روی پیوند شده با ماده آلی و روی باقیمانده در خاک لوم رسی به‌صورت معنی‌داری (05/0p≤) بیشتر از خاک لوم شنی بود، که می‌توان آن را به ویژگی‌های متفاوت دو خاک نسبت داد.
نتیجه‌گیری: نتایج این پژوهش نشان داد که تغییرات فیزیکی، شیمیایی، و بیولوژیکی شرایط خاک ناشی از ریشه ذرت نه تنها منجر به کاهش اجزاء متحرک روی شد، بلکه منجر به تغییر در اجزاء باثبات روی در خاک نیز شد. از آنجایی که استفاده زیاد از حد کلات کننده‌ها می‌تواند باعث قابلیت استفاده بیشتر روی در خاک شود بدون این که جذب گیاه را افزایش دهد، لذا استفاده از سطوح غلظتی بالاتر توصیه نمی‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Chemical fractions of zinc in the rhizosphere of corn in texturally different contaminated soils treated with chelators

نویسندگان [English]

  • Mohamad Rahmanian 1
  • Alireza Hosseinpur 2
1 Yasouj University
2 shahrekord univecsity
چکیده [English]

Background and objectives: Rhizosphere processes have an important role in zinc (Zn) fractions in soils. Plant roots have the ability to transform metal fractions for easy uptake by root exudation in the rhizosphere. In the peresent study, the effects of EDTA, citric acid and poultry manure extract (PME) on fractionation of Zn in the rhizosphere of corn (hybrid (KSC.704)) were investigated in two contaminated soils with different texture.
Materials and methods: This research was conducted as factoriel in a completely randomized pattern with three replicates in greenhouse condition, and citric acid and EDTA were used at concentrations level 0, 0.5 and 1 mmol kg-1 soil and poultry manure extract at concentrations level 0, 0.5 and 1 g kg-1 soil. Three seeds of corn were planted in the rhizobox. After 10 weeks, the plants were harvested and rhizosphere and bulk soils were separated. Dissolved organic carbon (DOC), microbial biomass carbon (MBC) and Zn fractions were determined in the rhizosphere and bulk soils.
Results: Results showed that there is a difference between rhizosphere soils properties and bulk soils. In both soils, DOC and MBC in the rhizosphere were significantly (p≤0.05) increased, while, pH in the rhizosphere was significantly (p≤0.05) decreased comared with bulk soils. In sandy loam and clay loam soils, the average of exchangeable Zn and Zn associated with organic matter in the rhizosphere were significantly (p≤0.05) lower than those in the bulk soils, while, the average of Zn associated with iron-manganese oxides, Zn associated with carbonate and residual Zn in the rhizosphere were significantly (p≤0.05) higher than those in the bulk soils. In the rhizosphere and bulk soils of both soils, the maximum amounts of Zn fractions in different fractions were respectively, in the order of associated with iron-manganese oxides, residuals, associated with organic matter, associated with carbonates and exchangeable fractions. A significant correlation was found between Zn uptake by shoots with Zn associated with iron-manganese oxides in both soils (r = 0.71, p < 0.05). In sandy loam soil, the highest Zn uptake by shoots was observed in the 1 g kg-1 PME treatment. In clay loam soil, the highest Zn uptake by shoots was observed in the 0.5 g kg-1 PME treatment. In sandy loam soil, 1 mmol kg-1 EDTA and in clay loam soil 1 mmol kg-1 citric acid treatments resulted in the release of the highest Zn concentrations in the iron-manganese oxides fraction. The results of average comparison showed that the average of the exchangeable Zn and Zn associated with iron-manganese oxides in the sandy loam soil were significantly (p≤0.05) higher than those in clay loam soil, while the average of the Zn associated with organic matter and residual Zn in clay loam soil were significantly (p≤0.05) higher than those in sandy loam soil, which can be attributed to different soil characteristics.
Conclusion: The results of the present study showed that soil physical, chemical and biological changes due to the corn roots cause not only lead to Zn depletion in mobile soil Zn fractions, but also lead to change soil’s stable Zn fractions. Since excessive use of chelators can lead to increase more availability of soil’s zinc without increasing the plant’s absorption, so the using higher concentration levels is not recommended.

کلیدواژه‌ها [English]

  • Zn fractions
  • rhizosphere
  • chelator
  • sandy loam
  • clay loam
1.Achibaa, W.B., Lakhdara, A., Gabtenib, N., Du Laingc, G., Verlooc, M., Boeckxd, P., Van Cleemputd, O., Jedidi, N., and Gallali, T. 2010. Accumulation and fractionation of trace metals in a Tunisian calcareous soil amended with farmyard manure and municipal solid waste compost. J. Hazard. Mater. 176: 1-3. 99-108.
2.Adamo, P., Denaix, L., Terribile, F., and Zampella, M. 2003. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma. 117: 3-4. 347-366.
3.Campbell, C.R., and Plank, C.O. 1998. Preparation of plant tissue for laboratory analysis. P 37-50, In: Y.P. Kalra (ed), Handbook of reference methods for plant analysis, CRC Press, Taylor and Francis Group.
4.Chen, Y., Li, X., and Shen, Z. 2004. Leaching and uptake of heavy metals by ten differentspecies of plants during an EDTA-assisted phytoextraction process. Chemosphere. 57: 187-196.
5.Clemens, S., Palmgren, M.G., and Kramer, U. 2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science. 7: 7. 309-315.
6.Corre, M.D., Schnabel, R.R., and Shaffer, J.A. 1999. Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biology and Biochemistry. 31: 11. 1531-1539.
7.Dede, G., Ozdemir, S., and Hulusi Dede, O. 2012. Effect of soil amendments on phytoextraction potential of Brassica juncea growing on sewage sludge. Inter. J. Environ. Sci. Technol. 9: 3. 559-564.
8.Dessureault-Rompre, J., Nowack, B., Schulin, R., Tercier-Waeber, M.L., and Luster, J. 2008. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots. Environmental Science and Technology. 42: 19. 7146-7151.
9.Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, S., Petruzzelli, G., and Del Bubba, M. 2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere. 72: 10. 1481-1490.
10.Formentini, T.A., Mallmann, F.J.K., Pinheiro, A., Fernandes, C.V.S., Bender, M.A., da Veiga, M., dos Santos, D.R., and Doelsch, E. 2015. Copper and zinc accumulation and fractionation in a clayey Hapludox soil subject to long-term pig slurry application. Science of the Total Environment. 536: 831-839.
11.Gee, G.H., and Bauder, J.W. 1986. Partial size analysis. P 383-411, In: A. Klute (ed), Methods of soil analysis, Part 2: Physical properties. Soil Science Society of America, Madison, Wisconsin.
12.Hamon, R.E., Lorenz, S.E., Holm, P.E., Christensen, T.H., and McGraph, S.P. 1995. Changes in trace metal species and other components of the rhizosphere during growth of radish. Plant, Cell and Environment. 18: 7. 749-756.
13.Jenkinson, D.S., and Powlson, D.S. 1976. The effects of biocidal treatments on metabolism in soil. I. Fumigation with chloroform. Soil Biology and Biochemistry. 8:3. 209-213.
14.Kabala, C., and Singh, R.R. 2001. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality. 30: 2. 485-492.
15.Kabata-Pendias, A., and Pendias, H. 2001. Trace element in soils and plants. 3rd ed. CRC Press, Boca Raton, FL, 413p.
16.Karczewska, A., Orlow, K., Kabala, C., Szopka, K., and Galka, B. 2011. Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Communications in Soil Science and Plant Analysis. 42: 12. 1379-1389.
17.Khanlari, Z.V., and Jalali, M. 2008. Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu, and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran. Archives of Agronomy and Soil Science. 54: 1. 19-32.
18.Li, H., Shen, J., Zhang, F.M., Clairotte, J.J., LeCadre, E., and Hinsinger, P. 2008. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant and Soil. 312: 1-2. 139-150.
19.Li, Z., and Shuman, L.M. 1997. Mobility of Zn, Cd and Pb in soils as affected by poultry litter extract-I. leaching in soil columns. Environmental Pollution. 95: 2. 219-226.
20.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J. 42: 421-428.
21.Loeppert, R.H., and Sparks, D.L. 1996. Carbonate and gypsum. P 437-474, In: D.L. Sparks (ed), Methods of soil analysis. Part 3: Chemical properties. Soil Science Society of America, Madison, Wisconsin.
22.Lombi, E., Wenzel, W.W., Gobran, G.R., and Adriano, D.C. 2001. Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: a review. P 3-24, In: G.R. Gobran,W.W. Wenzel and E. Lombi (eds), Trace elements in the rhizosphere, CRC Press LLC.
23.Lu, A., Zhang, S., and Shan, X.Q. 2005. Time effect on the fractionation of heavy metals in soils. Geoderma. 125: 3-4. 225-234.
24.Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon and organic matter. P 961-1010, In: D.L. Sparks (ed), Methods of soil analysis. Part 3: Chemical properties. Soil Science Society of America, Madison. Wisconsin.
25.Obrador, A., Novillo, J., and Alvarez, J.M. 2003. Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci. Soc. Amer. J. 67: 2. 564-572.
26.Perez-esteban, J., Escolastico, C., Masaguerb, A., and Moliner, A. 2012. Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Europ. J. Soil Sci. 63: 5. 733-742.
27.Qian, P., Schoenau, J.J., Wu, T., and Mooleki, S.P. 2003. Copper and zinc amounts and distribution in soil as influenced by application of animal manure in east-central Saskatchewan. Can. J. Soil Sci. 83: 197-202.
28.Rodríguez-Vila, A., Asensio, V., Forján, R., and Coveloa, E.F. 2015. Chemical fractionation of Cu, Ni, Pb and Zn in a mine soil amended with compost and biochar and vegetated with Brassica juncea L. J. Geochem. Explor. 158: 74-81.
29.Safari Singani, A.A., and Ahmadi, P. 2012. Manure application and cannabis cultivation influence on speciation of lead and cadmium by selective sequential extraction. Soil Sedimentary Contamination. 21: 3. 305-321.
30.Shaheen, S.M., and Rinklebe, J. 2014. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the central Elbe River, Germany. Geoderma. 228-229: 142-159.
31.Sposito, G., Lund, L.J., and Chang, A. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge. I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Amer. J. 46: 2. 260-264.
32.Tao, S., Chen, Y.J., Xu, F.L., Cao, J., and Li, B.G. 2003. Changes of copper speciation in maize rhizosphere soil. Environmental Pollution. 122: 3. 447-454.
33.Tembo, B.D., Sichilongo, K., and Cernak, J. 2006. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere. 63: 3. 497-501.
34.Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 51: 7. 844-851.
35.Wang, Y.B., Zhang, L., Fengmei, Z., Yinxuan, Z., and Dengyi, L. 2006. Distribution of heavy metals forms and its affecting factors in rhizosphere soils of Hippochae teramosissimum in large scale copper tailings yard. Acta Scientiae Circumstantiae. 26: 1. 76-84.
36.Wang, Z., Shan, X.Q., and Zhang, S. 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere. 46: 8. 1163-1171.
37.Wenzel1, W.W., Unterbrunner, R., Sommer, P., and Sacco, P. 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant and Soil. 249: 1. 83-96.