تحلیل فراوانی دومتغیره‌ خشکسالی در حوضه‌ آبریز قره‌سو-گرگانرود با استفاده از توابع مفصل

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

2 دانشیار دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

سابقه و هدف: خشکسالی یک پدیده حدی طبیعی است که می‌تواند ابعاد گوناگون زندگی بشر را تحت تأثیر قرار دهد. شناخت رفتار این پدیده در مدیریت منابع آب که در ارتباط بی‌واسطه با مفهوم خشکسالی است، اهمیت ویژه‌ای دارد. آگاهی از فراوانی رویدادهای خشکسالی با بزرگی مشخص، از جمله مواردی است که می‌تواند در مدیریت و برنامه‌ریزی منابع آب بسیار مفید واقع شود. این آگاهی با استفاده از روش‌های تحلیل فراوانی خشکسالی فراهم می‌شود. با توجه به ماهیت چند متغیره خشکسالی، مطالعه هر یک از وجوه یا متغیرهای آن به‌صورت منفرد احتمالاً نمی‌تواند شناخت جامع و کارآمدی از رفتار این پدیده را حاصل کند. ازاین‌رو، در سال‌های اخیر روش‌ها و تکنیک‌های گوناگون متعددی برای تحلیل فراوانی چندمتغیره خشکسالی توسعه یافته‌اند. کاربرد توابع مفصل در تحلیل فراوانی چندمتغیره خشکسالی، یکی از رویکردهایی است که به دلیل ماهیت چندمتغیره خشکسالی و همبستگی میان متغیرهای آن، کارآمدی قابل‌ملاحظه‌ای در این زمینه از خود نشان داده است. هدف تحقیق حاضر، مطالعه‌ رویدادهای خشکسالی هواشناسی و هیدرولوژیک در حوضه آبریز قره‌سو – گرگانرود و اجرای تحلیل فراوانی دومتغیره خشکسالی در این حوضه به‌وسیله توابع مفصل بر مبنای دو متغیر شدت و تداوم خشکسالی است که با بررسی روابط میان متغیرهای خشکسالی در این حوضه همراه خواهد بود و نتایج آن می‌تواند در برنامه‌ریزی اقدامات مربوط به مواجهه با خشکسالی در ناحیه موردمطالعه مورد استفاده قرار گیرد.
مواد و روش‌ها: در مطالعه حاضر از توابع مفصل به‌منظور اجرای تحلیل فراوانی دومتغیره خشکسالی در حوضه آبریز قره‌سو – گرگانرود استفاده می‌شود. دو متغیر شدت و تداوم خشکسالی بر اساس شاخص‌های خشکسالی هواشناسی و هیدرولوژیک برای تعداد 23 زیرحوضه در ناحیه مورد مطالعه محاسبه و در تحلیل فراوانی به‌کار گرفته می‌شوند. محاسبه متغیرهای شدت و تداوم خشکسالی بر اساس شاخص‌های خشکسالی هواشناسی و هیدرولوژیک انجام می‌گیرد. به‌علاوه، کارآمدی توابع مفصل مختلف در هر یک از زیرحوضه‌ها مورد بررسی قرار می‌گیرد و دوره‌های بازگشت متناظر با مقادیر شدت و تداوم متوسط خشکسالی در هر زیرحوضه محاسبه می‌شوند. در پایان، نقشه‌های دوره بازگشت خشکسالی‌های هواشناسی و هیدرولوژیک برای ناحیه مورد مطالعه ترسیم می‌شوند.
یافته‌ها: در زیرحوضه‌‌های مورد مطالعه، بین فراوانی رویدادهای خشکسالی هواشناسی با میانگین‌‌های متغیرهای شدت و تداوم خشکسالی رابطه همبستگی معکوس آشکاری وجود دارد. به‌علاوه، همبستگی بالایی بین آماره‌‌های میانگین دو متغیر شدت خشکسالی و تداوم خشکسالی هواشناسی مشاهده می‌شود. همچنین، بین فراوانی رویدادهای خشکسالی هیدرولوژیک با میانگین تداوم خشکسالی رابطه همبستگی معکوس آشکاری وجود دارد. اما در مورد همبستگی میان متغیرهای شدت و تداوم خشکسالی هیدرولوژیک، مشاهده می‌‌شود که مقدار ضریب همبستگی بسیار پایین‌‌تر از مقدار متناظر بین متغیرهای شدت و تداوم خشکسالی هواشناسی است. این مسأله می‌‌تواند به میزان قابل توجهی ناشی از تأثیر بزرگی مقادیر دبی ثبت شده در هر زیرحوضه بر مقدار متغیر شدت خشکسالی هیدرولوژیک باشد. در مجموع، نتایج بیانگر آن است که بالاترین میزان کارایی برای اجرای تحلیل فراوانی رویدادهای خشکسالی هواشناسی و هیدرولوژیک در ناحیه مورد مطالعه مربوط به تابع مفصل گامبل - هوگارد است. افزون بر این، بر اساس اغلب شاخص‌های مورد بررسی در این مطالعه، بزرگ‌‌ترین مقادیر دوره بازگشت توأم متناظر با مقادیر میانگین شدت و تداوم خشکسالی در زیرحوضه‌های 18 و 22 مشاهده می‌شوند.
نتیجه‌گیری: با توجه به نتایج به‌دست‌آمده، در ناحیه مورد مطالعه افزایش تجمعی شدت خشکسالی هواشناسی تا حد زیادی ناشی از افزایش تداوم رویداد خشکسالی است. همچنین، در مجموع می‌توان تابع مفصل گامبل - هوگارد را به‌عنوان کارآمدترین گزینه در میان توابع مفصل مورد مطالعه، برای اجرای تحلیل فراوانی خشکسالی در ناحیه مورد مطالعه در نظر گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Bivariate Drought Frequency Analysis in Gharesoo-Gorganrud Basin by Using Copulas

نویسندگان [English]

  • Seyed Saeid Mousavi Nadoushani 1
  • Saeed Alimohammadi 2
  • Ali Ahani 1
  • Masoumeh Behrouz 1
  • Seyed Mostafa Mousavi 1
1 Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Background and Objectives: The drought is considered to be one of the most important natural phenomenon affecting various aspects of human life. Therefore, understanding how this phenomenon behaves is an important part of the water resources management which is directly related to the concept of drought. Knowledge of frequency of drought events with specified magnitudes can be of great importance in water resources planning and management. This knowledge is provided by using the drought frequency analysis methods. However, because of the multivariable nature of the drought, studying its aspects or variables individually probably cannot result in an efficient and comprehensive knowledge about this phenomenon. Therefore, in the recent years, several multivariate methods and techniques have been developed for multivariate drought frequency analysis. Application of copulas in multivariate drought frequency analysis is one of the approaches that has shown a considerable efficiency in this field because of the multivariate nature of drought and the noticeable correlation between its variables. The objective of current research is to study the meteorological and hydrological drought events in Gharesoo-Gorganrud basin and perform bivariate drought frequency analysis in this basin by copulas based on the two variables drought severity and drought duration.
Materials and methods: In the current study, the copulas are utilized to perform bivariate drought frequency analysis in Gharesoo-Gorganrud basin. The two variables drought severity and drought duration are calculated based on the meteorological and hydrological drought indices for 23 watersheds in the study area and are used in the drought frequency analysis. In addition, the efficiency of different copulas are assessed in each watershed and the return periods corresponding to average values of drought severity and duration are calculated in each watershed. Finally, the maps of return periods of the meteorological and hydrological droughts are plotted for the study area.
Results: There are clear inverse correlations between the meteorological drought frequency and the variables severity and duration in the studied watersheds. In addition, a high correlation is seen between the mean statistics of the two meteorological drought variables severity and duration. Furthermore, there is a clear inverse correlation between the hydrological drought frequency and severity. However, it is observed that the correlation between the hydrological drought severity and duration is much lower than the corresponding value between the meteorological drought severity and duration. This issue can be caused by the effect of the magnitude of the recorded discharge in the watersheds on the value of hydrological drought severity variable. In general, Gumbel-Hougaard copula shows the highest efficiency for meteorological and hydrological drought frequency analysis in the study area. In addition, the highest values of the joint return period corresponding to the mean values of the drought severity and duration based on most of the assessed indices in this study are observed in the subbasins 18 and 22.
Conclusion: According to the results, in the study area, the cumulative increase of meteorological drought severity is yielded by an increase in the duration of drought events. Also, in general, Gumbel-Hougaard copula can be considered as the most efficient option among the studied copulas for drought frequency analysis in the study area.

کلیدواژه‌ها [English]

  • copula
  • bivariate frequency analysis
  • meteorological drought
  • hydrological drought
1.Abbasian, M. 2012. Study of joint distribution functions in hydrology using copula. (BS Thesis) Power and Water University of Technology, Tehran, Iran, 92p. (In Persian)
2.Abbasian, M., Jalali, S., and Mousavi Nadoushani, S.S. 2015. Multivariate flood frequency analysis using copula with parametric and nonparametric marginal distribution function. MJCE. 14: 4. 81-92. (In Persian)
3.Amirataee, B., Montaseri, M., and Rezaie, H. 2018. Regional analysis and derivation of copula-based drought Severity-Area-Frequency curve in Lake Urmia basin, Iran. J. Environ. Manage. 206: 134-144.
4.Ayantobo, O.O., Li, Y., Song, S., Javed, T., and Yao, N. 2018. Probabilistic modelling of drought events in China via 2-dimensional joint copula. J. Hydrol. 559: 373-391.
5.Dracup, J.A., Lee, K.S., and Paulson, E.G. 1980a. On the statistical characteristics of drought events. Water Resour. Res. 16: 2. 289-296.
6.Dracup, J.A., Lee, K.S., and Paulson, E.G. 1980b. On the definition of droughts. Water Resour. Res. 16: 2.297-302.
7.Farrokhnia, A., and Morid, S. 2007. Drought severity and duration analysis by using copulas. 4th National Congress on Civil Engineering. University of Tehran, Tehran, Iran. (In Persian)
8.Ghorbani, M. 2013. Comparison between using of the bivariate generalized pareto distribution and the copula functions approach in low-flow indices analysis. (M.Sc. Thesis) Shahid Beheshti University, Tehran, Iran, 106p. (In Persian)
9.Heim, R.R. 2002. A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc. 83: 8. 1149-1166.
10.Hisdal, H., Tallaksen, L.M., Clausen, B., Peters, E., and Gustard, A. 2004. Hydrological drought characteristics. P 139-198, In: Tallaksen, L., van Lanen, H.A.J. (Eds.), Hydrological Drought. Elsevier Science B.V., Amsterdam, the Netherlands.
 11.Jakubowski, W. 2006. An application of the bivariate generalized pareto distribution for the probabilities of low flow extremes estimation. Hydrol. Earth Syst. Sci. Discussions. 3: 859-893.
12.McKee, T.B., Doesken, N.J., and Kleist, J. 1993. The relationship of drought frequency and duration to time scales, paper presented at Eighth Conference on Applied Climatology. Am. Meteorol. Soc., Anaheim, CA.
13.Mirabbasi, R., Fakheri-Fard, A., and Dinpazhoh, Y. 2012. Bivariate drought frequency analysis using the copula method. Theor. Appl. Climatol. 108: 191-206.
14.Mirabbassi Najafabadi, R., Fakherifard, A., Dinpashoh, Y., and Eslamian, S.S. 2014. Longterm drought monitoring of Urmia using Joint Deficit Index (JDI). Water and Soil Science. 23: 87-103.
(In Persian)
15.Mirakbari, M., and Ganji, A. 2013. A bivariatie analysis of meteorological drought duration and severity (case study: Kermnashah province). Iran Water Res. J. 11: 17-25. (In Persian)
16.Nazemi, A., and Elshorbagy, A.A. 2012. Application of copula modelling to the performance assessment of reconstructed watersheds. Stoch. Environ. Res. Risk Assess. 26: 2. 189-205.
17.Nelsen, R.B. 2006. An Introduction to Copulas, Springer, New York.
18.Omidi, M., Mohammadzadeh, M., and Morid, S. 2010. The probabilistic analysis of drought severity-duration in Tehran province using copula functions. Iran. J. Soil Water Res. 41: 1. 95-101. (In Persian)
19.Rahimi, L., Dehghani, A., Abdolhosseini, M., and Ghorbani, K. 2014. Flood frequency analysis using Archimedean copula functions based on annual maximum series (Case study: Arazkuseh hydrometric station in Golestan province). Iranian Journal of Irrigation and Drainage. 8: 2. 353-365. (In Persian)
 20.Sadri, S., and Burn, D.H. 2012. Nonparametric methods for drought severity estimation at ungauged sites. Water Resour. Res. 48: W12505.
21.Shiau, J.T. 2003. Return period of bivariate distributed hydrological events. Stoch. Environ. Res. Risk Assess. 17: 1-2. 42-57.
22.Shiau, J.T. 2006. Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manage. 20: 5. 795-815.
23.Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges, Publication of the Institute of Statistics, University of Paris. 8: 229-231.
24.Thilakarathne, M., and Sridhar, V. 2018. Characterization of future drought conditions in the Lower Mekong River Basin. Weather and Climate Extremes. 17: 47-58.
25.Tosunoğlu, F., and Onof, C. 2017. Joint modelling of drought characteristics derived from historical and synthetic rainfalls: application of generalized linear models and copulas. J. Hydrol. Region. Stud. 14: 167-181.
26.Van de Vyver, H., and Van den Bergh, J. 2018. The Gaussian copula model for the joint deficit index for droughts. J. Hydrol. 561: 987-999.
27.Van Loon, A., and Van Lanen, H. 2012. A process- based typology of hydrological dorught. Hydrol. Earth Syst. Sci. 16: 1915-1942.
28.Wong, G., Van Lanen, H., and Torfs, P. 2013. Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrol. Sci. J. 58: 2. 253-270.
29.Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., and Shen, Y. 2015. Spatio-temporal variation of drought in China during 1961-2012: a climatic perspective. J. Hydrol. 526: 253-264.
30.Yang, J., Chang, J., Wang, Y., Li,
Y., Hu, H., Chen, Y., Huang, Q., and Yao, J. 2018. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. J. Hydrol. 557: 651-667.
31.Yevjevich, V. 1967. An objective approach to definitions and investigations of continental hydrologic droughts, Hydrologic Paper No. 23, Colorado State University, Fort Collins.
32.Zelenhastic, E., and Salvai, A. 1987. A method of streamflow drought analysis. Water Resour. Res. 23: 1. 156-168.
33.Zhang, L., and Singh, V.P., 2006. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. 11: 2. 150-164.
34.Zhang, L., and Singh, V.P. 2007a. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 332: 1-2. 93-109.
35.Zhang, L., and Singh, V.P. 2007b. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J. Hydrol. Eng. 12: 4. 431-439.
36.Zhang, Q., Qi, T., Singh, V. P., Chen, Y. D., and Xiao, M. 2015. Regional frequency analysis of droughts in China: a multivariate perspective. Water Resour. Manage. 29: 6. 1767-1787.