ارزیابی دو روش بیلان انرژی در سطح خاک و استفاده از تصاویر ماهواره ای جهت برآورد میانگین شبانه‌روزی دمای سطح خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

گروه علوم و مهندسی آب- دانشگاه کردستان

چکیده

سابقه و هدف: دمای سطح خاک نقشی کلیدی در تبادل جرم و انرژی بین سطح خاک و آتمسفر ایفاء می‌کند و پارامتر ورودی مهمی برای اجرای مدل‌های برآورد بیلان‌های گرما، رطوبت و کربن در سامانه خاک - گیاه - آتمسفر و مدل‌های شبیه‌سازی وضع هوا و اقلیم در مقیاس‌های منطقه‌ای و جهانی است و تمامی مؤلفه‌های بیلان انرژی در سطح خاک را تحت تاثیر قرار می‌دهد. علی‌رغم اهمیت زیاد و کاربرد قابل توجه دمای سطح خاک، اندازه‌گیری آن فقط در ایستگاه‌های سینوپتیک و بطور ناقص (فقط دمای حداقل شبانه روزی سطح خاک) انجام می‌شود و لذا لازم است این متغیر مهم توسط روش‌هایی مناسب مورد شبیه‌سازی قرار گیرد.
مواد و روش‌ها: در این پژوهش، از دو روش بیلان انرژی در سطح خاک و تصاویر ماهواره‌ای جهت برآورد میانگین شبانه‌روزی دمای سطح خاک در ایستگاه هواشناسی کشاورزی سرارود کرمانشاه، که در آن داده‌های دمای حداکثر و دمای حداقل شبانه‌روزی سطح خاک به ثبت رسیده‌اند، در بازه زمانی 2013 تا 2014 استفاده شد. برآورد میانگین دمای شبانه‌روزی سطح خاک بر اساس تصاویر ماهواره‌ای، با مد نظر قرار دادن تصاویر سنجنده MODIS تصویربرداری شده در چهار زمان مختلف شبانه‌روز شامل 22:30 شب، 1:30 شب، 10:30 صبح و 13:30 ظهر و با استفاده از نرم‌افزار MRT صورت گرفت و جهت اجرای مدل بیلان انرژی در سطح خاک، از داده‌های هواشناسی دمای هوا، بارش، سرعت باد، طول ساعات آفتابی و رطوبت نسبی در مقیاس روزانه همراه با برخی ویژگی‌های فیزیکی خاک بعنوان ورودی‌های مدل استفاده شد و در ادامه کارایی این دو روش با بکارگیری چند شاخص‌ سنجش خطا مورد ارزیابی قرار گرفت.
یافته‌ها: نتایج حاصل از بکارگیری تصاویر سنجنده MODIS نشان داد که از بین حالت‌های ترکیبی ممکن از دماهای سطح خاک در 4 زمان تصویربرداری مختلف توسط این سنجنده، محاسبه میانگین شبانه‌روزی دمای سطح خاک بر اساس میانگین‌گیری کردن از دمای سطح خاک در سه زمان 22:30 شب، 1:30 شب و 10:30 صبح بیشترین تطابق را با داده‌های مشاهداتی میانگین شبانه‌روزی دمای سطح خاک دارد و مقدار خطای مطلق و ضریب تعیین در این روش جهت برآورد میانگین شبانه‌روزی دمای سطح خاک به ترتیب 1/2 درجه سانتیگراد و 93/0 بدست آمد. با بکارگیری مدل بیلان انرژی در سطح خاک جهت برآورد میانگین شبانه‌روزی دمای سطح خاک نیز مقدار خطای مطلق، 8/1 درجه سانتیگراد و ضریب تعیین 96/0 بدست آمد. نتایج حاصل از تحلیل‌ سری‌های فصلی نشان داد که با بکارگیری مدل بیلان انرژی در سطح خاک و تصاویر ماهواره‌ای، بیشترین تطابق بین مقادیر محاسباتی و مشاهداتی به ترتیب طی فصول تابستان و زمستان رخ می‌دهد.
نتیجه‌گیری: نتایج کلی این پژوهش بیان‌کننده دقت قابل قبول و مناسب هر دو روش بکار گرفته شده و توصیه روش بیلان انرژی در سطح خاک بدلیل دقت بالاتر آن است. بر این اساس این امکان وجود دارد که از روش کلی بکار گرفته شده در این پژوهش برای شبیه‌سازی دمای سطح خاک در مناطق مختلف استفاده کرد و و از میانگین شبانه‌روزی دمای سطح خاک برآوردشده برای کاربردهای مختلفی از جمله بعنوان یک متغیر ورودی در مدل‌های شبیه‌سازی دما و رطوبت در خاک استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating soil surface energy balance model and satellite images to estimating mean daily soil surface temperature

نویسنده [English]

  • Younes Khoshkho
چکیده [English]

Abstract
Background and objectives: Background and objectives: Soil surface temperature has a key role in the mass and energy interchange between soil and atmosphere and it is an important input parameter to running the heat, water and carbon balance estimating models in the soil-plant-atmosphere system and weather and climate simulating models as well at the regional and global scales and the whole soil surface energy balance components are affected by soil surface temperature. Instead of the high important and remarkable application of soil surface temperature, its measurements is performed just in the synoptic meteorological stations and in an imperfect manner (just the minimum daily soil surface temperature) and so, it is essential to simulate this important variable by appropriate methods.
Materials and Methods: In this research, two methods including soil surface energy balance model and
satellite images were used to estimating daily mean soil surface temperature in the Sararoud-Kermanshah agro-meteorological station which has the recorded data of both maximum and minimum soil surface temperature at the 2013 to 2014 time period. Estimating daily mean soil surface temperature based on the satellite images was performed by considering the MODIS sensor images at four different times including 22:30, 1:30; 10:30 and 13:30 using the MRT software and to running the soil surface energy balance model, the daily meteorological data including air temperature, wind speed, sunshine and relative humidity along with some soil physical properties were used as the model inputs and the efficiency of these methods was evaluated using some evaluating error indices.
Results: By applying the MODIS sensor images, the results showed that from different combination cases of soil surface temperature at the mentioned imaging times, calculating daily mean soil surface temperature based on the averaging of soil surface temperatures at 22:30, 1:30 and 10:30 times was led to gaining the highest agreement with soil surface temperature observations and the absolute error and determination coefficient of this method to estimating daily mean soil surface temperature were 2.1 °C and 0.93, respectively. by applying the soil surface energy balance model to estimating daily mean soil surface temperature, the absolute error and determination coefficient were 1.8°C and 0.96, respectively. The results of the seasonal time series analysis showed that by using the soil surface energy balance model and satellite images, the highest agreement between calculated and observed values was occurred at summer and winter, respectively.
Conclusion: The overall results of this research showed reasonable and appropriate accuracy of both applied methods but the soil surface energy balance model is suggested because of its higher accuracy. Therefore, it is possible to adopt the applied methodology of this research to simulate the mean soil surface temperature in different regions and the estimated values of the daily mean soil surface temperature could be used to different applications such as soil temperature and moisture simulating models as an input variable.

کلیدواژه‌ها [English]

  • Energy balance
  • MODIS sensor
  • Sararoud-Kermanshah
  • Soil surface temperature
1.Alkhaier, F., Schotting, R.J., and Su, Z. 2009. A qualitative description of shallow groundwater effect on surface temperature of bare soil. Hydrol. Earth Syst. Sci. 13: 1749-1756.
2.Alvenas, G., and Jansson, P.E. 1997. Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis. Agric. For. Meteorol. 88: 47-56.
3.Beltrami, H., Gosselin, C., and Mareschal J.C. 2003. Ground surface temperatures in Canada: Spatial and temporal variability. Geophysical Research Letters. 30: 10. 1-4.
4.Flerchinger, G.N. 1991. Sensitivity of soil freezing simulated by the SHAW model. Trans. Amer. Soc. Agric. Engr. 34: 2381-2389.
5.Gao, Z.Q., Ning, J.C., and Gao, W. 2009. Response of land surface temperature to coastal land use/cover change by remote sensing. Trans. CSAE. 25: 274-281.
6.Giorgi, F., and Avissar, R. 1997. Representation of heterogeneity effects in earth system modelling: experience from land surface modeling. Rev. Geophys. 35: 413-437.
7.Gustafsson, D., Lewan, E., and Jansson, P.E. 2004. Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia. J. Appl. Meteorol.
43: 1750-1767.
8.Herb, W.R., Janke, B., Mohseni, O., and Stefan, H.G. 2008. Ground surface temperature simulation for different land covers. J. Hydrol. 356: 3. 327-343.
9.Hu, G., Wu, X., Zhao, L., Li, R., Wu, T., Xie, C., and Cheng, G. 2017. An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China. Meteorology and Atmospheric Physics. 129: 4. 441-451.
10.Jansson, P.E., and Karlberg, L. 2010. Coupled heat and mass transfer model for soil-plant-atmosphere systems. Royal Institute of Technology, Stockholm. 454p.
11.Jin, M.L., and Dickinson, R.E. 2010. Land surface skin temperature clima-tology: Benefi tting from the strengths of satellite observations. Environ. Res. Lett. 5: 1-13.
12.Kerridge, B.L., Hornbuckle, J.W., Christen, E.W., and Faulkner, R.D. 2013. Using soil surface temperature to assess soil evaporation in a drip irrigated vineyard. Agricultural water management. 116: 128-141.
13.Kersten, M.S. 1949. Laboratory research for the determination of the thermal properties of soils. ACFEL Tech. Rep. 23. University of Minnesota, Minneapolis.
14.Khoshkhoo, Y., Jansson, P.E., Irannejad, P., Khalili, A., and Rahimi, H. 2015. Calibration of an energy balance model to simulate wintertime soil temperature, soil frost depth, and snow depth for a 14 year period in a high elevation area of Iran. Cold Regions Science and Technology. 119: 47-60.
15.Khoshkhoo, Y. 2016. Simulation of the snow depth using Single Layer Snow Model (SLSM) at Saghez station. Iran. J. Soil Water Res. 47: 3. 517-527. (In Persian)
16.Khoshkhoo, Y., Esmaeili, S., and Abdollahi, M. 2017. Estimating daily and monthly air temperature parameters in the Kurdistan province using MODIS satellite images. Iran. J. Soil Water Res. 49: 2. 413-423. (In Persian)
17.Kleissl, J., Moreno, H., Hendrickx, J.M.H., and Simunek, J. 2007. HYDRUS simulations of soil surface temperatures. In Proc. International Society for Optical Engineering, SPIE. 6553: 1-12.
18.Liang, L.L., Riveros-Iregui, D.A., Emanuel, R.E., and McGlynn, B.L. 2014. A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions. J. Geophys. Res. Atmos. 119: 407-417.
19.Luo, D., Jin, H., Lu, L., and Zhou, J. 2016. Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980–2013. Theoretical and applied climatology. 123: 3-4. 885-897.
20.Mualem, Y. 1976. A new model predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12: 513-522.
21.Newman, G.P. 1995. Heat and Mass Transfer in Unsaturated Soils during Freezing. M.Sc. Thesis. University of Saskatchewan. Saskatoon. Canada. 212p.
22.Philip, J.R., and deVries, D.A. 1957. Moisture movement in porous materials under temperature gradients. Eos Trans. 38: 2. 222-232.
23.Pielke, R.A. 2001. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 39: 151-177.
24.Qian, B.D., Gregorich, E.G., Gameda, S., Hopkins, D.W., and Wang, X.L. 2011. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. Atmos. 116: 1-16.
25.Schelde, K., Thomsen, A., Heidmann, T., Schjonning, P., and Jansson, P.E. 1998. Diurnalfluctuations of water and heat flows in a bare soil. Water Resour. Res. 34: 2919-2929.
26.Simunek, J., Sejna, M., and VanGenuchten, M.T. 1998. The HYDRUS-1D software package for simulating water flow and solute transport in two-dimensional variably saturated media. Version 2.0. IGWMC-TPS-70. InternationalGroundWaterModelingCenter. ColoradoSchool of Mines, Golden, 202p.
27.Staniec, M., and Nowak, H. 2016. The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy and Buildings. 127: 56-65.
28.Sun, D., and Kafatos, M. 2007. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34, no 24.
29.Sun, Z., Wang, Q., Batkhishig, O., and Ouyang, Z. 2015. Relationship between evapotranspiration and land surface temperature under energy and water-limited conditions in dry and cold climates. Advances in Meteorology. 39: 1-9.
30.Xiong, J., Wu, B.F., Yan, N.N., Zeng, Y., and Liu, S.F. 2010. Estimation and validation of land surface evaporation using remote sensing and meteorological data in north China, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing. 3: 3. 337-344.
31.Yang, Y., Qiu, J., Su, H., Bai, Q., Liu, S., Li, L., and Huang, Y. 2017. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature. Remote Sensing. 9: 1-25.