واسنجی چند هدفه مدل هیدرولوژیکی مفهومی مبتنی بر هیدروگراف واحد لحظه ای ژئومورفلوژیکی (مطالعه موردی: زیر حوضه قره سو)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه تحصیلات تکمیلی و فناوری پیشرفته کرمان

2 کارشناس ارشد عمران_مهندسی آب - دانشکده عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

3 دانشکده عمران، دانشگاه باهنر کرمان

4 دانشگاه بیرجند گروه مهندسی آب

چکیده

سابقه و هدف: یکی از راه‌های پیش‌بینی و برآورد مقدار رواناب حاصل از بارش نزولات جوی استفاده از مدل‌های هیدرولوژیکی است. واسنجی پارامترهای مؤثر در مدل‌های هیدرولوژیکی یکی از گام‌های اساسی در استفاده از این مدل‌ها می‌باشد. در این میان بهینه‌سازی چند هدفه یکی از موضوعات مهم و کاربردی می‌باشد. هدف این‌گونه بهینه‌سازی‌ها تعیین مقادیر پارامترهای مدل برای یافتن بهترین راه‌حل ممکن و دستیابی به اهداف مختلف است.
مواد و روش‌ها: در این پژوهش مدل بارش – رواناب مفهومی MILC توسط الگوریتم چند هدفه AMALGAM، مورد واسنجی خودکار قرار گرفت. این مدل از مفهوم مدل رواناب سطحی SCS برای محاسبه بارش مازاد و از مفهوم هیدرو گراف واحد لحظه‌ای ژئومورفولوژیکی نیز برای روند یابی این بارش مازاد در سطح حوضه استفاده می‌کند. در این مطالعه برای واسنجی و همچنین ارزیابی مدل از 4 تابع هدف ناش – ساتکلیف (NSE) برای جریان‌های اوج، TRMSE برای جریان‌های کم، ROCE برای جریان متوسط و SFDCE برای شیب‌خط تداوم جریان استفاده شد. فرایند واسنجی توسط 4 تابع هدف مذکور صورت گرفت و خروجی‌های مدل که همان نقاط بهینه پارتو هستند موردبررسی قرار گرفتند و درنهایت از هر خروجی یک نقطه به‌عنوان نقطه بهینه میانگین انتخاب شد. در انتها این نقاط که شامل پارامترهای واسنجی شده مدل هستند در دوره صحت سنجی جهت مقایسه با مقادیر مشاهداتی مورداستفاده قرار گرفتند.
نتایج: مقادیر به‌دست‌آمده در دوره‌ی صحت سنجی اعدادی بین 71/0 و 78/0 برای تابع NSE را نشان می‌دهد که با توجه به مقدار بهینه این توابع (=+1 NSE)، نتایج گویای عملکرد مناسب مدل در شبیه‌سازی جریان‌های اوج است. همچنین مقادیر به‌دست‌آمده برای توابع ROCE و به‌خصوص SFDCE که در دوره صحت‌سنجی اعدادی بین 72 و 129 به دست آمد؛(SFDCE=0 در حالت بهینه) حاکی از ضعف مدل MILC در شبیه‌سازی جریان‌های میانه است.
نتیجه‌گیری: مقادیر به‌دست‌آمده برای تابع هدف TRMSE در دوره‌ صحت‌سنجی اعدادی بین 48/1 - 22/1 بود (TRMSE=0 در حالت بهینه) که این ارقام گویای شبیه‌سازی مناسب دبی‌های کم می‌باشد. بهره‌گیری از الگوریتم بهینه‌سازی چندهدفه برای فرایند واسنجی خودکار مدل بارش – رواناب به دلیل استفاده از چند تابع هدف گوناگون که هرکدام قسمتی از هیدرو گراف حوضه را مورد هدف قرار می‌دهند، باعث به چالش کشیدن مدل در شبیه‌سازی تمامی جریان‌های موجود در حوضه می‌شود که این موضوع اهمیت استفاده از الگوریتم‌های چندهدفه در واسنجی مدل‌های هیدرولوژیکی را نشان می‌دهد. همچنین انتخاب هوشمندانه چند تابع هدف در فرایند واسنجی مدل، نقش کلیدی در شناخت هرچه بیشتر مدل دارد که این امر با بهره‌گیری از الگوریتم‌های چندهدفه به‌جای تک هدفه برای فرایند واسنجی میسر می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The multi-objective calibration of the conceptual hydrological model based on instantaneous unit hydrograph (The Case study: Gharesoo basin)

نویسندگان [English]

  • Mohammad Sadegh Ghazanfari Moghadam 1
  • Morteza Farahmand Rad 2
  • Gholam Abbas Barani 3
  • Mohsen Pourreza Bilondi 4
1
2
3
4
چکیده [English]

Background and Objectives: One of the ways to predict and estimate the amount of runoff from rainfall is the use of hydrological models. Calibration of effective parameters in hydrological models is one of the basic steps in using these models. However, this process is a critical step which should be carried out carefully to optimize the model parameters. Multi-objective optimization algorithms as one of the most important and practical topics in various fields of study could be employed to achieve a reasonable calibration. The purpose of these algorithms is to determine the values of model parameters to find the best possible solution and achieve different goals.

Materials and Methods: In this study، Multi-objective optimization algorithm (AMALGAM) used to calibrate conceptual daily hydrologic model (MILC). AMALGAM method combines two new concepts and takes place in two modes of evolution. In the first case, the evolutionary capabilities of four multi-objective algorithms NSGA-II, PSO, DE and AMS are used simultaneously to evolve the population, and in the latter case, the AMALGAM algorithm itself is used to evolve the population. This algorithm is called a multi-objective hybrid algorithm due to the simultaneous use of multiple multithreading algorithms. The reason for choosing the AMALGAM algorithm is the superiority of this algorithm in achieving a fast and accurate access to the sum total of Pareto's optimal responses to other multi-objective algorithms such as MOPSO, SPEA2 and NSGA-II. MILC model employs the Soil Conservation Service—Curve Number method for abstraction (SCS-CN) for estimation of losses، the geomorphological Instantaneous Unit Hydrograph (GIUH) for routing of rainfall excess of catchment. This paper applies a four-objective calibration strategy focusing on peak flows (NSE)، low flows (TRMSE)، water balance (ROCE)، and flashiness (SFDCE) to parameter estimation of MILC model. After calibration process، a trade-off point extracted from Pareto- front was selected to include the appropriate values of all four objectives simultaneously. This point is applied to verify the validation period.

Results: The obtained values during the validation period (0.71 ≤ NSE ≤ 0.78) indicate that the MILC model has Good performance to simulate the amount of peak flows but according to ROCE and SFDCE values it has weak performances to simulate the balance water and median flow respectively.

Conclusion: It’s recommended to use multi-objective optimization algorithm rather than one objective optimization for calibration of hydrological models because this optimization covers the all hydrograph flows. Selecting objective functions for calibrate the rainfall-runoff model is the key to recognizing the model as much as possible.

کلیدواژه‌ها [English]

  • Hydrological model calibration
  • MILC
  • Ghareso
  • Geomorphological Instantaneous Unit Hydrograph
1.Brocca, L., Melone, F., and Moramarco, T. 2011. Distributed rainfall-runoff modeling for flood frequency estimation and flood forecasting. Hydrological Processes. Pp: 2801-2813.
2.Box, G.E.P., and Cox, D.R. 1964. An analysis of transformations, J. R. Stat. Soc. Ser. B.
Pp: 211-252.
3.Corradini, C., Melone, F., and Ubertini, L. 1995. A semi-distributed model for direct runoff estimate. In Applied Simulation and Modelling, Hamza, M.H. (ed.). IASTED Acta Press: Anahheim (CA), Pp: 541-545.
4.Dooge, J.C.I. 1959. A General Theory of the Unit Hydrograph. J. Geophysic. Res.
64: 241-256.
 5.Green, W.H., and Ampt, G.A. 1911. Studies on soil physics. J. Agric. Sci. 4: 1-24.
6.Gupta, H., Sorooshian, S., and Yapo, P. 1998. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res.
34: 751-763.
7.Horton, R. 1933. The role of infiltration in the hydrological cycle. Trans. AGU. 14: 446-460.
8.Horton, R. 1939. Analysis of runoff-plot experiments with varying Infiltration capacity. Trans. AGU. 20: 693-711.
9.Imbeau, M.E., La Durance. 1892. Regime. Crues et inundations. Ann. Ponts Chausses Mem. Doc. Ser. Pp: 5-18.
10.Kollat, J.B., Reed, P.M., and Wagener, T. 2012. When are multiobjective calibration
trade-offs in hydrologic models meaningful? Water Resour. Res. 48: W03520.
11.Lighthill, M., and Whitham, G. 1955. On Kinematic waves I and II a theory of traffic flow on long crowded roads. Proc. Royal Society, London, Series A, 229, Pp: 317-345.
12.Mulvany, T.J. 1850. On the use of self registering rain and flood gauges. Inst. Civ. Eng. Proc. (Dublin), 4: 1-8.
13.Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I. A discussion of principles, J. Hydrol. 10: 282-290.
14.Nash, J.E. 1957. The Form of the Instantaneous Unit Hydrograph. International Association of Scientific Hydrology Publication. 45: 114-121.
15.Sadeghi, T.S., Pourreza, B.M., and Taghian, M. 2015. Multi-Objective Optimization of
the Hedging Model for reservoir Operation Using Evolutionary Algorithms. J. Water Wastewater. 26: 14-22. (In Persian)
16.Sherman, L.K. 1932. Streamflow from rainfall by the unit-graph method, Eng. News Rec. 108: 501-505.
17.Tang, Y., Reed, P., and Wagener, T. 2006. How efficient and effective are evolutionary multiobjective algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci.
10: 289-307.
18.Vrugt, J.A., and Robinson, B.A. 2007. Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences. 104: 708-711.
19.Zhang, X., Srinivasan, R., and Liew, M.V. 2010. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrological Processes.