1.Al-Abad, A., Al-Temmeme, A., and Al-Ghanimy, A. 2016. A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq, Sustain. Water Resour. Manage. 2: 3. 265-283.
2.Ayazi, M.H., Pirasteh, S., Arvin, A.K.P., Pradhan, B., Nikouravan, B., and Mansor, S.
2010. Disasters and risk reduction in groundwater: Zagros mountain southwest Iran using geo-informatics techniques. Dis. Adv. 3: 1. 51-57.
3.Constantin, M., Bednarik, M., Jurchescu, M.C., and Vlaicu, M. 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ. Earth Sci. 63: 2. 397-406.
4.Chenini, I., and Mammou, A.B. 2010. Groundwater recharge study in arid region: an approach using GIS techniques and numerical modelling. Comput. Geosci. 36: 6. 801-817.
5.Chen, W., Pourghasemi, H.R., and Naghibi, S.A. 2017. Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms, Bull. Eng. Geol. Environ. 23: 2. 1-19.
6.Dempster, A.P. 1968. Generalization of Bayesian inference. J. R. Stat. Soc. Series B.
30: 205-247.
7.Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C., Dhital, M.R., and Althuwaynee, F. 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards. 65: 1. 135-165.
8.Davoodi Moghaddam, D., Rezaei, M., Pourghasemi, H.R., Pourtaghie, Z.S., and Pradhan, B. 2015. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab. J. Geosci. 8: 2. 913-929.
9.Ercanoglu, M., and Gokceoglu, C. 2002. Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol. 41: 6. 720-730.
10.Guo-Liang, D., Yong-Shuang, Z., Javed, I., and Xin, Y. 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China, J. Mt. Sci. 14: 2. 249-268.
11.Glenn, C.R. 2012. Lahaina Groundwater Tracer Study-Lahaina, Maui, Hawaii. Final Interim Report prepared from the State of Hawaii DOH, the U.S. EPA and the U.S. Army Engineer Research and Development Center.
12.Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., and Sattarian, A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int. J. Environ. Sci. Technol. 11: 4. 909-926.
13.Jothibasu, A., and Anbazhagan, S. 2016. Modeling groundwater probability index in Ponnaiyar River basin of South India using analytic hierarchy process, Model. Earth Syst. Environ. 2: 109.
14.Lee, S., Hwang, J., and Park, I. 2013. Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena. 100: 15-30.
15.Lee, S., Song, K.Y., Kim, Y., and Park, I. 2012. Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeol. J. 20: 1511-1527.
16.Lee, S., and Pradhan, B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression model. Landslides. 4: 1. 33-41.
17.Molden, D. 2007. Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan, London and International Water Management Institute, Colombo.
18.Magesh, N.S., Chandrasekar, N., and Soundranayagam, J.P. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 3: 2. 189-196.
19.Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Soleiman, W.N.A., and Ramli, M.F. 2012. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab. J. Geosci. 7: 2. 711-724.
20.Moore, I.D., Grayson, R.B., and Ladson, A.R. 1991. Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydro. Process. 5: 3-30.
21.Mirzapour, H., and Haghi Zadeh, A. 2017. Delineation of groundwater potential zones in Madian Roud watershed in Lorestan using Weighted Index Overlay Analysis (WIOA). Hydrogeology. 1: 83-98. (In Persian)
22.Mogaji, K.A., Lim, H.S., and Abdullah, K. 2014. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab. J. Geosci. 8: 5. 3235-3258.
23.Naghibi, S.A., Pourghasemi, H.R., Pourtaghie, Z.S., and Rezaei, A. 2014. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. J. Earth Sci. 8: 1. 171-186.
24.Naghibi, S.A., Pourghasemi, H.R., and Dixon, B. 2016. Groundwater spring potential using boosted regression tree, classification and regression tree and random forest machine learning models in Iran. Environ. Monit. Assess. 188: 1. 44-64.
25.Nampak, H., Pradhan, B., and Manap, M.A. 2014. Application of GIS based data
driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 513: 283-300.
26.Ozdemir, A., and Altural, T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J. Asia. Earth Sci. 64: 180-197.
27.Pourghasemi, H.R., and Beheshtirad, M. 2014. Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int. 30: 6. 662-685.
28.Pourghasemi, H.R., and Kerle, N. 2016. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 75:185.
29.Page, M.L., Berjamy, B., Fakir, Y., Bourgin, F., Jarlan, J., Abourida, A., Benrhanem, M., Jacob, G., Huber, M., Sghrer, F., Simonneaux, V., and Chehbouni, G. 2012. An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resour. Manage. 26: 3209-3230.
30.Pourtaghi, Z.S., and Pourghasemi, H.R. 2014. GIS-based groundwater spring potential assessment and mapping in the Birj and Township, southern Khorasan Province, Iran. Hydrogeol. J. 22: 643-662.
31.Razandi, Y., Pourghasemi, H.R., Samani-Neisani, N., and Rahmati, O. 2015. Application of analytical hierarchy process, frequency ratio and certainty factor models for groundwater potential mapping using GIS. Earth Sci. Inf. 8: 4. 867-883.
32.Rahmati, O., Pourghasemi, H.R., and Melesse, A. 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena. 137: 360-372.
33.Samy, I., Shattri, M., Bujang, B.K., and Ahmad, R.M. 2011. Structural geologic control with the limestone bedrock associated with piling problems using remote sensing and GIS: a modified geomorphological method. Environ. Earth Sci. 66: 8. 2185-2195.
34.Sharma, L.P., Patel, N., Ghose, M.K., and Debnath, P. 2010. Influence of Shannon’s entropy on lands lide -causing parameters for vulnerability study and zonation-a case study in Sikkim, India. Arab. J. Geosci. 5: 3. 421-431.
35.Shafer, G. 1976. A mathematical theory of evidence, vol. 1. Princeton University, Princeton.
36.Shekhar, S., and Pandey, A.C. 2014. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto. Int. 30: 4. 402-421.
37.Singh, P., Gupta, A., and Singh, M. 2014. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egypt J. Rem. Sens. Space Sci. 17: 111-121.
38.Tehrany, M.S., Pradhan, B., and Jebur, M.N. 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 504: 69-79.
39.Taheri, K., Gutie´rrez, F., Mohseni, H., Raeisi, E., and Taheri, M. 2015. Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude-frequency relationships: a case study in Hamadan province, Iran. Geomorphology. 234: 64-79.
40.Thapa, R., Gupta, S., Guin, S., and Kaur, H. 2017. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal, Appl. Water Sci. 7: 7. 4117-4131.
41.Umar, Z., Pradhan, B., and Ahmad, A. 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena. 118: 124-135.
42.Youssef, A.M., Pradhan, B., and Jebur, M.N. 2015. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ. Earth Sci. 73: 7. 3745-3761.
43.Yesilnacar, E.K. 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey, PhD Thesis. Department of Geomatics the University of Melbourne, 423p.
44.Zabihi, M., Pourghasemi, H.R., Pourtaghi, Z.S., and Behzadfar, M. 2016. GIS based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 75: 665.
45.Zabihi, M., Pourghasemi, H.R., Pourtaghi, Z.S., and Behzadfar, M. 2015. Groundwater Potential Mapping using Shannon's Entropy and Random Forest Models in the Bojnourd Township. EcoHydrology. 2: 221-232. (In Persian)