ارزیابی روش کریجینگ بیزین تجربی در پهنه‌بندی تراز آب زیرزمینی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 عضو هیأت علمی دانشگاه

2 عضو هیأت علمی

3 دانشجوی کارشناسی ارشد

چکیده

چکیده:
سابقه و هدف: آب‌های زیرزمینی از منابع ارزشمندی است که همواره مورد توجه پژوهشگران قرار داشته است. از موارد مطالعاتی در این زمینه، تهیه نقشه‌های پهنه‌بندی شده تراز سطح آب زیرزمینی است که با انتخاب مناسب‌ترین روش از بین روش‌های مختلف درون‌یابی انجام می‌شود. روش درون‌یابی کریجینگ که بر پایه نیم‌تغییر نما است، یکی از روش‌های درون‌یابی موسوم به روش‌های زمین‌آماری است. دقت درون‌یابی به انتخاب مناسب تغییرنما بستگی دارد. بر این اساس روش درون‌یابی کریجینگ بیزین تجربی توسعه یافته است تا بصورت خودکار، پارامترهای مربوط به نیم‌تغییر نما را طی فرآیند شبیه‌سازی برآورد کند. هدف از انجام این پژوهش بررسی قابلیت روش کریجینگ بیزین تجربی در افزایش دقت درون‌یابی جهت پهنه‌بندی تراز سطح آب زیرزمینی است که برای این منظور، نتایج آن با نتایج دیگر روش‌های درون‌یابی قطعی شامل فاصله معکوس وزنی‌ها، توابع پایه شعاعی و چندجمله‌ای های سراسری و محلی نیز مقایسه می‌شود.
مواد و روش‌ها: این پژوهش براساس میانگین سالانه تراز سطح آب زیرزمینی در 57 ایستگاه چاه عمیق واقع در آبخوان قره‌سوی استان گلستان طی دوره آماری 1384 تا 1395 انجام شده است. به منظور پهنه‌بندی تراز سطح آب زیرزمینی، روش‌های مختلف درون‌یابی قطعی و زمین‌آماری با استفاده از فن اعتبارسنجی تقاطعی مورد آزمون قرار گرفتند. در روش‌های کربجبنگ و کریجینگ بیزین تجربی بهترین نیم‌تغییرنما انتخاب شد و در نهایت از بین آنها مدلی که کمترین میزان خطا را به همراه داشت تعیین و نقشه آن ترسیم شد.
یافته‌ها: نتایج درون‌یابی حاصل از اعتبارسنجی تقاطعی در منطقه مطالعاتی نشان داد که در بین روش‌های قطعی، روش چند جمله‌ای محلی با درجه دو از دقت بالاتری نسبت به سایر روش‌ها برخوردار بود، به طوری که حتی در مقایسه با روش زمین آماری کریجینگ نیز از خطای کمتری برخوردار است. در روش‌های زمین‌آماری نیز روش کریجینگ بیزین تجربی با شبیه‌سازی برازش تغییر‌نما مناسب بر داده‌های تراز سطح آب زیرزمینی میزان خطای درون‌یابی به روش کریجنگ را از حدود 23 متر به حدود 16 مترکاهش داد و در مقایسه با روش چند جمله‌ای محلی نیز دقتی نزدیک بهم را نشان داد.
نتیجه‌گیری: با وجود اینکه نقشه ترسیم شده با دو روش بیزین کریجینگ تجربی و چند جمله‌ای موضعی، از لحاظ مقدار خطا تفاوت قابل ملاحظه‌ای را نشان نمی‌دهند، اما اختلافات محسوسی در این دو نقشه دیده می‌شود. روش کریجینگ بیزین تجربی طیف هموارتری را از تغییرات تراز سطح آب زیرزمینی نشان می‌دهد و الگوی ترسیم شده تراز سطح آب زیرزمینی با این روش نیز متناسب با جهت شیب عمومی منطقه است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Empirical Bayesian Kriging method in ground water level zoning

نویسندگان [English]

  • Khalil Ghorbani 1
  • Meysam Salarjazi 2
  • Elnaz Farnia 3
1 Faculty Member
2
3
چکیده [English]

Evaluation of the Empirical Bayesian Kriging method in ground water level zoning

Abstract
Background and Objective: Groundwater as one of valuable water resources has always been of interest to researchers. Preparing an interpolated water level zoning map is one of fields that is can be acquired via best interpolation methods among different available methods. The Kriging method, based on semivariogram analysis, is one of traditional geostatistical methods. Interpolation precision is depended on the suitable selection of variogram. Empirical Bayesian Kriging (EBK) method is developed to estimated semivariogram parameters during simulation process. The objective of this study is investigation of EBK to increase the precision of groundwater level interpolation zoning and its results compare to other deterministic interpolation method including inverse distance weighted, radial basis function and local and global polynomial functions.
Material and Methods: This study is based on annual mean groundwater level of 57 deep well in Ghareh-Sou aquifer located in Golestan province during 2005-2016 period. Different deterministic and geostatistical interpolation methods evaluated using cross validation technique to groundwater level zoning. The best semivariogram selected for Kriging and EBK methods and finally the model with minimum error is determined and its map is drawn.
Findings: The results of cross validation in study area showed better results for degree two local polynomial methods among deterministic method even it had less error in comparison with Kriging method. The EBK methods, with simulation of fitness of suitable variogram on groundwater level data, led to decrease in Kriging error (23 to 16 meter) and had close precision to local polynomial method.
Conclusion: Although the error of prepared maps based on EBK and local polynomial methods have not significant differences, but there are considerable discrepancies between these maps. The EBK basis map show smoother spectrum of groundwater level changes and the drawn pattern is proportionate with general slope of study area.
Findings: The results of cross validation in study area showed better results for degree two local polynomial methods among deterministic method even it had less error in comparison with Kriging method. The EBK methods, with simulation of fitness of suitable variogram on groundwater level data, led to decrease in Kriging error (23 to 16 meter) and had close precision to local polynomial method.
Conclusion: Although the error of prepared maps based on EBK and local polynomial methods have not significant differences, but there are considerable discrepancies between these maps. The EBK basis map show smoother spectrum of groundwater level changes and the drawn pattern is proportionate with general slope of study area.

کلیدواژه‌ها [English]

  • Empirical Bayesian Kriging
  • Groundwater
  • Golestan
  • Geo-Statistics
  • Interpolation
 1.Aghdasi, F. 2003. Study of geostatistical methods for mapping of precipitation in the daily
and annual time scales (Case study: Borkhar plain). M.Sc. Thesis of Tehran university,
112p. (In Persian)
2.ArcGIS 10 Manual PDF-GeoGeek. 2017. Retrieved March 09, 2017, from
https://geogeek.xyz/download-free-arcgis-desktop-10-manual-pdf.html.
3.Attorre F., and Alfo, M. 2007. Comparison of interpolation methods for mapping climatic and
bioclimatic variables at regional scale. Inter. J. Climatol. 27: 1825-1843.
4.Bahrami Jovein, E., and Hosseini, S.M. 2015. A Systematic Comparison of Geostatistical
Methods for Estimation of Groundwater Salinity in Desert Areas (Case study: Feyz AbadMahvelat Plain). Iran-water resources research. 11: 2. 1-15. (In Persian)
5.Eivazi, M., and Mosaedi, A. 2011. Monitoring and spatial analysis of meteorological drought
in Golestan province using geostatistical methods. Journal of range and watershed
management, Iran. J. Natur. Resour. 64: 1. 65-78. (In Persian)
6.Ghorbani, Kh. 2012. Geographically weighted regression: a method for mapping isohyets in
Gilan province. J. Water Soil. 26: 3. 743-752. (In Persian)
7.Ghorbani, Kh., Hezarjeribi, A., Zakerinia, M., and Asaadi Oskouei, E. 2012. Comparison of
Regression Decision Tress, Geographically Weighted Regression and Ordinary Least Square
to map isohyet. Iran. J. Water Res. 6: 11. 1-9. (In Persian)
8.Hajihashemi Haji, M.R., Atashgahi, M., and Hamidian, A.H. 2010. Spatial estimation of
groundwater quality factors using geostatistical methods (Case study: Golpayegan plain).
J. Natur. Environ. 63: 4. 347-357. (In Persian)
9.Helsel, D.R., and Hirsch, R.M. 1993. Statistical Methods in Water Resources: Elsevier.
546p.
10.Jameei, M. 2008. Evaluation of interpolation methods in the regional estimation of potential
evapotranspiration and its comparison with the results of satellite images in central and
northern field of khozestan province. M.Sc. Thesis of Azad Islamic university, Science and
Research Branch of Tehran, 176p.
11.Khattak, A., Ahmed, N., Hussein, I., Qazi, A., Alikhan, S., and Rehman, A. 2014.
Spatial distribution of salinity in shallow groundwater used for crop irrigation. Pak. J. Bot.
46: 2. 531-537.
12.Krivoruchko, K. 2012. Empirical Bayesian Kriging, Implemented in ArcGIS Geostatistical
Analyst. Arc user. 15: 4. 6-10.
13.Matkan, A., Shakiba, A., and Yazdani, A. 2007. Evaluation of different interpolation
methods on daily rainfall estimation. Case study: Fars province. Quar. Geograph. J. Territ.
4: 2. 56-70. (In Persian)
14.McKenna, S.A. 2002. Simulating geological uncertainty with imprecise data for groundwater
flow and advective transport modeling. Department of Geology and Geological Engineering,
Colorado School of Mines Golden, Colorado, U.S.A. Pp: 1-15.
15.Misaghi, F., and Mohammadi, K. 2007. Estimating Spatial Distribution Of rainfall using
Statistical and geostatistical methods and comparison with artificial network. Semiann. Sci.
J. Agric. 29: 4. 1-13. (In Persian)
16.Nikbakht, S., and Delbari, M. 2014. Estimation of groundwater levels using geostatistical
methods. Case study: Zahedan Plain. J. Water Sust. Dev. 1: 1. 49-56. (In Persian)
17.Salehi, H., and Zeinivand, H. 2015. Assessing groundwater quality and selection of the most
appropriate spatial interpolation method (Case study: West of Marivan city, Iran). Iran. J.
Ecohydrol. 1: 3. 153-166. (In Persian)
18.Shahabifar, M., Kouchakzadeh, M., Mohammadzadeh, M., and Mirlatifi, S.M. 2005.
Determination of sugar beet water requirement in Tehran province using geostatistics
methods. J. Sugar Beet. 20: 2. 133-147. (In Persian)
19.Tobler, W.R. 1970. A computer movie simulating urban growth in the Detroit region,
Economic Geography, 46: 234-240.