مقایسه عملکرد مدلهای ماشین بردار پشتیبان، برنامه ریزی بیان ژن وشبکه بیزین در پیش بینی جریان رودخانه ها (مطالعه موردی: رودخانه کشکان)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکترای سازه آبی دانشگاه لرستان

2 هیات علمی گروه مهندسی آب، دانشگاه لرستان

چکیده

سابقه و هدف: پیش‌بینی جریان رودخانه‌ها یکی از مهم‌ترین موارد کلیدی در مدیریت و برنامه‌ریزی منابع آب‌ به‌ویژه اتخاذ تصمیمات صحیح در مواقع سیلاب و بروز خشکسالی‌ها، است. برای پیش‌بینی میزان جریان رودخانه‌ها رویکردهای متنوعی در هیدرولوژی معرفی‌شده است که مدل‌های هوشمند از مهمترین آن‌ها می‌باشند. در این پژوهش جهت ارزیابی دقت مدل‌ها در پیش‌بینی جریان رودخانه، از داده‌های روزانه حوضه آبریز کشکان واقع در استان لرستان استفاده‌شده است. جهت مدلسازی جریان روزانه رودخانه کشکان از مدلهای ماشین بردار پشتیبان، برنامه‌ریزی بیان ژن و شبکه بیزین استفاده شد و نتایج برای بررسی صحت مدل‌های موردمطالعه با یکدیگر مقایسه گردید. در پژوهش‌های معدودی هر یک از مدل‌های بیان‌شده در پیش‌بینی دبی جریان روزانه موردبررسی قرارگرفته است اما هدف این پژوهش بررسی همزمان این مدل‌ها در یک حوضه برای پیش‌بینی جریان روزانه رودخانه می‌باشد.

مواد و روش: در این پژوهش رودخانه کشکان واقع در استان لرستان به‌عنوان منطقه موردمطالعه انتخاب‌شده و جریان روزانه مشاهداتی این حوضه در ایستگاه هیدرومتری پلدختر جهت واسنجی و اعتبارسنجی مدل‌ها بکار گرفته شد. برای این منظور، در ابتدا 80 درصد از داده‌های جریان روزانه (1390-1383) برای واسنجی مدل‌ها انتخاب‌شده و 20 درصد داده‌ها (1393-1391) جهت اعتبارسنجی مدل‌ها استفاده شد. برنامه‌ریزی ژن یک تکنیک برنامه‌ریزی خودکار است که راه‌حل مساله را با استفاده از برنامه‌ریزی کامپیوتر ارائه کرده و عضوی از خانواده الگوریتم تکاملی می‌باشد. ماشین بردار پشتیبان نیز یک سیستم یادگیری کارآمد بر مبنای تئوری بهینه‌سازی مقید است. همچنین شبکه بیزین، نمایش بامعنی روابط نامشخص مابین پارامترها در یک فرآیند می‌باشد و گرافی جهت‌دار غیر حلقوی از گره‌ها برای نمایش متغیرهای تصادفی و کمان‌ها برای نمایش روابط احتمالی مابین متغیرها به شمار می‌رود. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا، میانگین قدر مطلق خطا برای ارزیابی و نیز مقایسه عملکرد مدل‌ها در این پژوهش مورداستفاده قرار گرفت.
یافته‌ها: نتایج نشان داد هر سه مدل شبکه بیزین، برنامه‌ریزی بیان ژن و ماشین بردار پشتیبان، در ساختاری متشکل از 1 تا 5 تأخیر زمانی نتایج بهتری نسبت به سایر ساختارها ارائه می‌دهد. همچنین با توجه به معیار ارزیابی نتیجه شد که از بین مدل‌های به‌کاررفته مدل ماشین بردار پشتیبان، بیشترین دقت 910/0= R و کمترین ریشه میانگین مربعات خطا l/s 2RMSE= و کمترین میانگین قدر مطلق خطاl/s 1MAE= در مرحله صحت سنجی را دارا می‌باشد. همچنین این مدل در تخمین مقادیر حداقل، حداکثر و میانی عملکرد خوبی از خود نشان داده است.

نتیجه‌گیری: درمجموع نتایج نشان داد مدل ماشین بردار پشتیبان عملکرد بهتری نسبت به مدل‌های شبکه بیزین و برنامه‌ریزی بیان ژن دارد. بنابراین مدل ماشین بردار پشتیبان می‏تواند در زمینه پیش‌بینی جریان روزانه رودخانه مؤثر بوده و در نوبه خود برای تسهیل توسعه و پیاده‌سازی استراتژی‌های مدیریت آب‌های سطحی مفید باشد. و گامی در اتخاذ تصمیمات مدیریتی در جهت بهبود کمیت منابع آب‌های سطحی ایجاد نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing the performance of Support Vector Machines, Gene Expression Programming and Bayesian networks in predicting river flow (Case study: Kashkan River)

نویسندگان [English]

  • Reza Dehghani 1
  • Hojjatollah Yonesi 2
  • Hasan Torabi Poudeh 2
1
2 doctor
چکیده [English]

Background and objectives: Quantitative prediction of river discharge one of the most important elements in the management of surface water resources, especially take suitable decisions in occurrence of floods and drought events. Various approaches introduced in hydrology to predict river discharge which intelligence models are the most important ones.In this study, recorded data sets in kashkan watershed area located in lorestan were used to investigate the precision of different river discharge prediction models. The support vector machine model as a gene expression programming model and Bayesian network models selected for modeling of daily river discharge and the results were compared to examine the accuracy of studied models. In some studies, the expressed models used for daily river discharge prediction but the main objectives of this study are application of these models to predict daily discharge for a watershed.
Materials and Methods: In this study kashkan river basin was selected as the study area and observed daily river flow of this basin in the poldokhtar station were applied for calibration and validation of models. For this purpose, first 80 percent of daily river flow data (2004-2011) were selected to calibrate models and 20 percent of data (2012-2014) were used to validate models. Gene expression programming solution is a technique that is automatically programmed using the PC programming and evolutionary algorithm is a member of the family. Support vector machine is also an efficient learning system is based on the theory of constrained optimization. Bayesian networks, display meaningful relationships between parameters in the process is unclear and non-cyclic directed graph of nodes to display random variables for representing probabilistic relationships between variables considered magmatic arc. Criteria of correlation coefficient, root mean square error and coefficient, mean absolute error and performance of models were used to evaluation models.
Results: The results showed that all three models, Bayesian networks, support vector machine and gene expression programming, in a structure consisting of 1 to 5 delay gives better results than any other structure. Also of results according to the evaluation criterion was that the models used support vector machine model, most accurate R=0.880 and the lowest Root Mean Square Error RMSE=0.002m3/s and the lowest average absolute error MAE=0.001m3/s the validation phase is capable. Also, the estimates of minimum, maximum and median has shown good performance.
Conclusions: support vector machine model outperformed the Bayesian network modeling and gene expression programming. So, support vactor machine model can be effective in forecasting the daily stream flow and in turn facilitate the development and implementation of surface water management strategies will be useful. And a step in making management decisions to improve the quantity of surface water create.

کلیدواژه‌ها [English]

  • Gene expression programming
  • Forcast
  • Bayesian network
  • Kashkan
  • Support vector machine
-1.Adib, A., Mahmoudian Kafshgar Kalaee, M., Mahmoudian Shoushtari, M., and M. Khalili, K.
2017. Using of gene expression programming and climatic data for forecasting
flow discharge by considering trend, normality and stationarity analysis. Arabi. J. Geosci.
10: 4. 1-14.
2.Ahmadi, F., Dinpajoh, Y., Fakherifard, A., Khalili, K., and Darbandi, S. 2015. Comparing
nonlinear time series models and genetic programming for daily river flow forecasting
(Case study: Barandouz-Chai River). Soil and water conservation research. 22: 1. 171-186.
(In Persian)
3.Ahmadi, F., Radmanesh, F., and Mirabasi, R. 2015. Comparing the performance of support
vector machines and Bayesian networks in predicting daily river flow (Case study:
Barandouz-Chai River). Soil and water conservation research. 22: 6. 171-186. (In Persian)
4.Botsis, D., Latinopoulos, P., and Diamantaras, K. 2012. Investigation of The effect of
interception and evapotranspiration on the rain fall-run off relationship using Bayesian
networks. In: Proceedings of protection and restoration of the environment XI, Thessaloniki.
5.Chen, S.T., and Yu, P.S. 2007. Real-time probabilistic forecasting of flood stages. J. Hydrol.
340: 63-77.
6.Danandeh Mehr, A., and Majdzadeh Tabatabaei, M.R. 2009. I prediction of daily discharge
trend of river flow based on genetic programming. J. Water Soil. 24: 2. 325-333. (In Persian)
7.Esazadeh, M., Ahmadzadeh, H., and Ghorbani, M.A. 2016. Assessment of kernel functions
performance in river flow estimation using support vector machine. Soil and water
conservation research. 23: 3. 171-186. (In Persian)
8.Ferbodnam, N., Ghorbani, M.A., and Alami, M.T. 2008. River flow prediction using genetic
programming (Case study: Lighvan River Watershed). J. Soil Water. 19: 1. 107-123.
(In Persian)
9.Ferreira, C. 2001. Gene expression programming: a new adaptive algorithm for solving
problems. Complex Systems. 13: 2. 87-129.
10.Ghorbani, M.A., Khatibi, R., Asadi, H., and Yousefi, P. 2012. Inter- Comparison of an
evolutionary programming model of suspended sediment time-series whit other local model.
INTECH. 26: 5. 255-282.
11.Ghorbani, M.A., Khatibi, R., Geol, A., Fazelifard, M.H., and Azani, A. 2016. Modeling river
discharge time series using support vector machine and artificial neural networks.
Environmental Earth Sciences. 75: 4. 675-685.
12.Heckerman, D. 1997. Bayesian networks for data mining. Data Mining and Knowledge
Discovery. 1: 1. 79-119.
13.Huang, S., Chang, J., Huang, Q., and Chen, Y. 2014. Monthly streamflow prediction using
modified emd-based support vector machine. J. Hydrol. 511: 4. 764-775.
14.Kakaei Lafadani, E., Moghaddam Nia, A., Ahmadi, A., Jajarmizadeh, M., and Ghafari, M.
2013. Stream flow simulation using svm, anfis and nam models (a case study). Caspian J.
Appl. Sci. Res. 2: 4. 86-93.
15.Kevin, B., and Nicholson, E. 2010. Bayesian artificial intelligence. Second Edition, United
states. 3: 1. 370-450.
16.Khatibi, R., Naghipour, L., Ghorbani, M.A., and Aalami, M.T. 2012. Predictability of
relative humidity by two artificial intelligence techniques using noisy data from two
Californian gauging stations. Neural computing and application. 23: 7. 643-941.
17.Kisi, O., Karahan, M., and Sen, Z. 2006. River suspended sediment modeling using fuzzy
logic approach. Hydrol Process. 20: 2. 4351-4362.
18.Lin, J.Y., Cheng, C.T., and Chau, K.W. 2006. Using support vector machines for long-term
discharge prediction. Hydrol. Sci. J. 51: 3. 599-612.
19.Liong, S.Y., and Sivapragasam, C. 2002. Flood stage forecasting with support vector
machines. J. Am. Water Resour. 38: 4. 173-186.
20.MacKay, D.J.C. 1992. Bayesian interpolation, Neural Computation. 4: 1. 415-447.
21.Misra, D., Oommen, T., Agarwal, A., Mishra, S.K., and Thompson, A.M. 2009. Application
and analysis of support vector machine based simulation for runoff and sediment yield.
Biosyst. Eng. 103: 3. 527-535.
22.Mohammadpour, M., Mehrabi, A., and Katouzi, M. 2012. Daily discharge forecasting using
support vector machine. Inter. J. Inf. Elec. Engin. 2: 5. 769-772.
23.Moshari, K.H., and Daneshfaraz, R. 2014. Comparison of Bayesian networks with other smart
models predict river flow in Qvrh tea. Tenth International Congress on Civil Engineering.
24.Nagy, H., Watanabe, K., and Hirano, M. 2002. Prediction of sediment load concentration in
rivers using artificial neural network model. J. Hydraul. Engin. 128: 3. 558-559.
25.Nguyen, R.T., Prentiss, D., and Shively, J.E. 1998. Rainfall interpolation for Santa Barbara
County. UCSB, Department Geography. USA.
26.Roshangar, K., Vojoudi Mehrabani, F., and Alami, M.T. 2013. Forecasting daily stream
flows of vaniar river using genetic programming and neural networks approaches. J. Civil
Engin. Urban. 3: 4. 197-200.
27.Sadeghi Hesar, A., Tabatabaee, H., and Jalali, M. 2012. Monthly rainfall forecasting using
bayesian belief networks. Inter. Res. J. Appl. Bas. Sci. 3: 11. 2226-2231.
28.Sedighi, F., Vafakhah, M., and Javadi, M. R.2016. Rainfall–Runoff modeling using support
vector machine in snow-affected watershed. Arab. J. Sci. Engin. 41: 10. 4065-4076.
29.Tokar, A.S., and Johnson, P.A. 1999. Rainfall-Runoff modeling using artificial neural
networks. J. Hydrol. Engin. 3: 4. 232-239.
30.Vapnik, V.N. 1995. The nature of statistical learning theory. Springer, New York,
Pp: 250-320.
31.Vapnik, V.N. 1998. Statistical learning theory. Wiley, New York, Pp: 250-320.
32.Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. 2011. A comparative study of
artificial neural networks and support vector machines for predicting groundwater levels in a
coastal aquifer. J. Hydrol. 396: 128-138.
33.Zamani, R., Ahmadi, F., and Radmanesh, F. 2014. Comparison of the gene expression
programming, nonlinear time series and artificial neural network in estimating the river daily
flow (case study: the Karun river). J. Soil Water. 28: 6. 1172-1182. (In Persian)