توسعه یک مدل عددی جدید بر مبنای گالرکین ناپیوسته برای شبیه سازی تهاجم آب شور دریا به آبخوان های ساحلی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 استاد دانشگاه شهید چمران اهواز

3 استاد دانشگاه بین المللی امام خمینی

چکیده

سابقه و هدف: آبخوان های ساحلی از مهم ترین منابع تامین آب شیرین در بسیاری از کشور های جهان، بخصوص در نواحی خشک و نیمه خشک به شمار می رود. بدلیل مجاورت و ارتباط آبخوان های ساحلی با آب شور دریا و تهدید ناشی از آلوده شدن آن ها بواسطه پیش روی آب شور، مدیریت و حفاظت این منابع آب شیرین ساحلی امری کاملاً ضروری است. بنابراین هدف از پژوهش حاضر، توسعه یک مدل عددی جدید برای شبیه سای انتقال آلودگی در آبخوانهای ساحلی (تهاجم آب شور دریا به آبخوان های ساحلی) با استفاده از روش عددی گالرکین ناپیوسته می باشد.
مواد و روش‌ها: در این تحقیق از روش‌های گالرکین ناپیوسته که کمتر در مسائل مهندسی گسترش پیدا کرده‌ است، برای شبیه‌ سازی جریان‌های وابسته به چگالی آب زیرزمینی (مانند هجوم آب شور دریا به آبخوان‌های ساحلی) بکار گرفته شد. برای این منظور معادلات غیر خطی حاکم بر جریان و انتقال شوری در یک محیط آبخوان اشباع با استفاده از روش گالرکین ناپیوسته منقطع‌سازی گردید و از روش ضمنی برای منقطع‌سازی زمانی استفاده شد. پس از اعمال شرایط مرزی و اولیه، روش پیکارد اصلاح شده برای خطی‌سازی معادلات جبری حاصله بکار گرفته شد که برای از بین بردن نوسانات غیرفیزیکی در حل عددی از محدود کننده شیب چاونت-جافری استفاد شد. دو مسأله اصلاح شده هنری، مسأله الدر و درنهایت مسأله آزمایشگاهی گاسوامی-سلمنت در سه فاز متفاوت مورد استفاده قرار گرفت. برای تمامی مسائل نتایج با سایر حل‌های ارائه شده برای آن مسائل مقایسه گردید تا دقت مدل قابل ارزیابی باشد. همگرایی روش با ریز کردن شبکه حل در مسأله استاندارد هنری نشان داده شد. محدود کننده شیب چاونت-جافر برای کنترل نوسانات غیر فیزیکی در حل مسأله آزمایشگاهی بطور موفقیت‌آمیزی بکار گرفته شد که نتایج رضایت بخشی از آن بدست آمد. نتایج حاصل دقت مدل را در مقایسه با سایر روش‌های عددی بخوبی نشان داده است.
نتیجه‌گیری: مدل با استفاده از مسائل مذکور مورد صحت‌سنجی و ارزیابی قرار گرفت که نتایج حاصل در تمامی مثال-ها حاکی از دقت بسیار بالای این روش دارد. در مکان‌ هایی از دامنه حل که سرعت جریان بالاست، نشان داده شد این روش در مقایسه با برخی روش‌ها همانند تفاضل محدود نوسانات غیر فیزیکی از خود بروز نمی‌دهد. علاوه براین نتایج نشان می‌دهد که این روش نسبت به روش‌های عددی دیگر همچون روش احجام محدود پخش عددی کمتری را بروز می‌دهد. همینطور استفاده از این روش برای شبیه‌سازی مسأله آزمایشگاهی جنبه کاملاً عملی این مدل را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Numerical Method Based on Discontinuous Galerkin for Simulation of Seawater Intrusion into Coastal Aquifers

نویسندگان [English]

  • Ali Raeisi Isa Abadi 1
  • Hamid Reza Ghafouri 2
  • Davood Rostami 3
1
2
3
چکیده [English]

Background and objectives : Coastal aquifers are of the most important freshwater resources in many countries, especially in arid and semi arid zones. Due to the proximity and contact with the sea, and thus the threat of contamination because of the seawater intrusion, management and protection of these freshwater resources are quite necessary. Therefore, the main goal of the present study is to develop a new numerical model for simulation of the contaminant transport in coastal aquifers (seawater intrusion into coastal aquifers) using discontinuous Galerkin method.
Materials and methods : In this study, Discontinuous Galerkin methods which have been less developed in engineering problems were applied for discretization of the coupled nonlinear system of flow and solute transport equations in a saturated porous medium and a fully implicit backward Euler scheme was applied for temporal discretization. The primal DGs have been developed successfully for density dependent flows by applying initial and boundary conditions to the coupled equations. Then, to linearize the resulting nonlinear systems, Picard iterative technique was applied and Chavent Jaffre slope limiter was used to eliminate the nonphysical oscillations appeared in the solution. Note that the formulation which was used is based on the equivalent freshwater head and normalized mass fraction as dependent variables.
Results: Five benchmark problems including standard Henry problem together with its two modified versions, Elder problem and Goswami Clement experimental problem in three distinct phases were simulated for validation and verification of the numerical code. For all the benchmark problems, the results were compared against other solutions in order to assess the model accuracy. The solution convergence was proved for the standard henry problem. Applying the Chavent Jaffre slope limiter to the experimental test showed a satisfactory results obtained from the simulations. In comparison with other numerical solutions, the present model revealed a good accuracy for all the problems.
Conclusion: The DG model were verified and evaluated using the above-mentioned problems. The results from simulations showed a good accuracy for DG method. In portions of the domain where the velocity is high, it was indicated that the DG methods in comparison with other numerical methods e.g. finite difference, do not emerge non-physical oscillations. Also, the results show a less numerical dispersion in comparison with other numerical methods such as finite volume methods. In addition, simulating the experimental problem with the current model shows the practical aspects of the developed model based on discontinuous Galerkin.

کلیدواژه‌ها [English]

  • Keywords: Discontinuous Galerkin
  • Density-dependent groundwater flow
  • Locally conservative
  • Seawater intrusion
  • Slope limiter
1.Abarca, E., Carrera, J., Sánchez-Vila, X., and Dentz, M. 2007. Anisotropic dispersive Henry
problem. Advances in Water Resources. 30: 4. 913-926.
2.Ackerer, P. 2004. A new coupling algorithm for density-driven flow in porous media.
Geophysical Research Letters. 31: 12. 12506.
3.Bear, J. 1999. Seawater Intrusion in Coastal Aquifers. Springer Science & Business Media.
4.Croucher, A.E., and O’Sullivan, M.J. 1995. The Henry Problem for Saltwater Intrusion. Water
Resources Research. 31: 7. 1809-1814.
5.Diersch, H.J. 1988. Finite element modelling of recirculating density-driven saltwater
intrusion processes in groundwater. Advances in Water Resources. 11: 1. 25-43.
6.Diersch, H.J.G., and Kolditz, O. 2002. Variable-density flow and transport in porous media:
approaches and challenges. Advances in Water Resources. 25: 8-12. 899-944.
7.Frolkovic, P. 1998. Consistent velocity approximation for density driven flow and transport.
P 603-11, In: R. Van Keer (Ed.), Advanced computational methods in engineering, Part 2.
Maastrich: Shaker Publishing.
8.Frolkovič, P., and De Schepper, H. 2001. Numerical modelling of convection dominated
transport coupled with density driven flow in porous media. Advances in Water Resources.
24: 1. 63-72.
9.Goswami, R.R., and Clement, T.P. 2007. Laboratory-scale investigation of saltwater intrusion
dynamics. Water Resources Research. 43: 4. 1-11.
10.Guo, W., and Langevin, C.D. 2002. User’s guide to SEAWAT; a computer program for
simulation of three-dimensional variable-density ground-water flow.
11.Hoteit, H., Ackerer, P., Mose, R., Erhel, J., and Philippe, B. 2004. New two-dimensional
slope limiters for discontinuous Galerkin methods on arbitrary meshes. Inter. J. Num. Meth.
Engin. 61: 14. 2566-2593.
12.Huyakorn, P.S., Andersen, P.F., Mercer, J.W., and White, H.O. 1987. Saltwater intrusion in
aquifers: Development and testing of a three-dimensional finite element model. Water
Resources Research. 23: 2. 293-312.
13.Jamei, M., and Ghafouri, H. 2015. A discontinuous Galerkin method for two-phase flow
in porous media using modified MLP slope limiter. Modares Mechanical Engineering.
15: 12. 326-336.
14.Jamei, M., and Ghafouri, H. 2016. A novel discontinuous Galerkin model for two-phase flow
in porous media using an improved IMPES method. Inter. J. Num. Meth. Heat Fluid Flow.
26: 1. 284-306.
15.Johannsen, K. 2003. On the Validity of the Boussinesq Approximation for the Elder Problem.
Computational Geosciences. 7: 3. 169-182.
16.Kolditz, O., Ratke, R., Diersch, H.J.G., and Zielke, W. 1998. Coupled groundwater flow and
transport: 1. Verification of variable density flow and transport models. Advances in Water
Resources. 21: 1. 27-46.
17.Langevin, C.D., and Guo, W. 2006. MODFLOW/MT3DMS-based simulation of variabledensity ground water flow and transport. Ground water. 44: 3. 339-51.
18.Mazzia, A., and Putti, M. 2002. Mixed-finite element and finite volume discretization for
heavy brine simulations in groundwater. J. Com. Appl. Math. 147: 1. 191-213.
19.Oltean, C., and Buès, M.A. 2001. Coupled Groundwater Flow and Transport in Porous Media.
A Conservative or Non-conservative Form? Transport in Porous Media. 44: 2. 219-246.
20.Oude Essink, G. 1998. MOC3D adapted to simulate 3D density-dependent groundwater flow.
Proceedings of the MODFLOW’98 Conference, Pp: 291-303.
21.Pinder, G.F., and Cooper, H.H. 1970. A Numerical Technique for Calculating the Transient
Position of the Saltwater Front. Water Resources Research. 6: 3. 875-882.
22.Povich, T.J. 2012. Discontinuous Galerkin (DG) methods for variable density groundwater
flow and solute transport. J. Univ. Texas at Austin.
23.Putti, M., and Paniconi, C. 1995. Picard and Newton linearization for the coupled model for
saltwater intrusion in aquifers. Advances in Water Resources. 18: 3. 159-170.
24.Rivière, B. 2008. Discontinuous Galerkin methods for solving elliptic and parabolic
equations: theory and implementation, Society for Industrial and Applied Mathematics.
25.Segol, G., Pinder, G.F., and Gray, W.G. 1975. A Galerkin-finite element technique
for calculating the transient position of the saltwater front. Water Resources Research.
11: 2. 343-347.
26.Simmons, C.T., Fenstemaker, T.R., and Sharp, J.M. 2001. Variable-density groundwater
flow and solute transport in heterogeneous porous media: approaches, resolutions and future
challenges. J. Cont. Hydrol. 52: 1-4. 245-275.
27.Simpson, M.J., and Clement, T.P. 2004. Improving the worthiness of the Henry problem as a
benchmark for density-dependent groundwater flow models. Water Resources Research.
40: 1. 1-11.
28.Simpson, M.J., and Clement, T.P. 2003. Theoretical analysis of the worthiness of Henry and
Elder problems as benchmarks of density-dependent groundwater flow models. Advances in
Water Resources. 26: 1. 17-31.
29.Voss, C.I., Simmons, C.T., and Robinson, N.I. 2010. Three-dimensional benchmark for
variable-density flow and transport simulation: matching semi-analytic stability modes for
steady unstable convection in an inclined porous box. Hydrogeol. J. 18: 1. 5-23.
30.Voss, C.I., and Souza, W.R. 1987. Variable density flow and solute transport simulation of
regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources
Research. 23: 10. 1851-1866.
31.Woods, J.A., and Carey, G.F. 2007. Upwelling and downwelling behavior in the Elder-VossSouza benchmark. Water Resources Research. 43: 12. 1-12.
32.Younes, A., and Fahs, M. 2014. A semi-analytical solution for saltwater intrusion with a very
narrow transition zone. Hydrogeol. J. 22: 2. 501-506.
33.Zidane, A., Younes, A., Huggenberger, P., and Zechner, E. 2012. The Henry semianalytical
solution for saltwater intrusion with reduced dispersion. Water Resources Research. 48: 6. 1-10.