تعیین اهمیت نسبی پارامترهای دو مدل هیدرولوژیکی یکپارچه با استفاده از روش های موریس، سوبول و شاخص آنتروپی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه گنبد کاووس

2 استادیار- دانشگاه گنبد

3 دانشگاه گنبد کاووس- هیات علمی

چکیده

ont-family: TimesNewRomanPSMT;font-sizدر طی دهههای اخیر با افزایش قابلیت مدلسازی با کامپیوتر شاهد افزایش پیچیدگی و تنوع مدلهای هیدرولوژیکی بودهایم. با افزایش پیچیدگی مدل، تعداد پارامترهای مدل زیاد شده که این مسأله باعث افزایش احتمال بیشبرازشی و سخت شدن شناسایی پارامترها و ساختار مدل میشود. بدینمنظور با استفاده از آنالیز حساسیت پارامترهای مهم که به نوعی رفتار مدل را کنترل میکنند شناسایی شده و سهم هر یک از پارامترها در عدم قطعیت خروجی مدل تعیین میشود. روشهای مختلفی برای آنالیز حساسیت پارامترها و ورودیهای مدلهای مختلف وجود دارد که آنها را به دو دسته موضعی و سراسری تقسیمبندی میکنند. در حالیکه در روشهای موضعی تغییرات خروجی مدل در حالتی که سایر پارامترها ثابت بوده و فقط یکی از پارامترها تغییر میکند بررسی میشود. روشهای سراسری قادر بوده آنالیز حساسیت را برای کل دامنه پارامترهای مدل اجرا کرده و همچنین میتوانند اثرات متقابل بین پارامترها و غیرخطی بودن را نیز در نظر بگیرند. در این پژوهش کارایی سه روش آنالیز حساسیت شامل روشهای موریس، سوبول و شاخص آنتروپی در آنالیز حساسیت پارامترها و ورودیهای مدلهای هیدرلوژیکی
TOPMODELو

کلیدواژه‌ها


عنوان مقاله [English]

Assessing the relative importance of two lump hydrological models parameters using Morris, Sobol and Entropy index methods

نویسندگان [English]

  • Abolhasan Fathabadi 1
  • Hamed Rouhani 2
  • Seyed Morteza Seyedian 3
1
2 Assitat prof
3
چکیده [English]

The sensitivity and interaction analysis based onSobol, Morris screen
and Entropy methods were applied. The Morris method has been proposed as a screening
method to identify a subset of inputs that have the greatest influence on the outputs.Sobol SA is a global, variance-based method that attributes variance in the model output to individual
parameters and their interactions.Mutual entropy analysis is a sensitivity analysis method in
which the mutual entropy of two variables is regarded as the correlative extent between these
two variables. The distribution character of data (X, Y) can be expressed by contingency tables.
The HBV model and TOPMODEL are used as a test problem. There are thirteen and nine
parameters in the HBV model and TOPMODEL models, respectively. In each model, samples
of the model parameter space are obtained using a latin-hypercube. The convergence analysis
has been performed by increasing the number of simulations until there was no significant
change of the sensitivity measure. In addition, the three SA methods are evaluated and
compared in terms of convergence, the related evolution of the parameter ranking results and
required computation cost.

کلیدواژه‌ها [English]

  • Sensitivity analysis
  • Entropy
  • Sobol
  • Morris
  • Hydrological model
1.Aghakouchak, A., and Habib, E. 2010. Application of a conceptual hydrologic model in
teaching hydrologic processes. Inter. J. Engin. Edu. 26: 4. 963-973.
2.Baroni, G., and Tarantola, S. 2014. A general probabilistic framework for uncertainty and
global sensitivity analysis of deterministic models: a hydrological case study. Environmental
Modelling and Software. 51: 26-34.
3.Bergstrom, S. 1976. Development and application of a conceptual runoff model for
Scandinavian catchments. Bulletin: Series A - Dept. of Water Resources Engineering, Lund
Institute of Technology ; no. 52. 134p.
4.Beven, K.J., Lamb, R., Quinn, P.F., Romanowicz, R., and Freer, J. 1995. TOPMODEL,
P 627-668, In: V.P. Singh (eds), Computer Models of Watershed Hydrology,Water Resour.
Publ, Fort Collins, Colo.
5.Beven, K.J. 1997. TOPMODEL: a critique. Hydrological Processes.11: 9. 1069-1085.
6.Campolongo, F., and Braddock, R. 1999. The use of graph theory in the sensitivity analysis of
the model output: A second order screening method. Reliability Engineering and System
Safety. 64: 1. 1-12.
7.Campolongo, F., Saltelli, A., and Cariboni, F. 2011. From screening to quantitative sensivitative
analysis, a unified approach. Computer Physics Communication. 182: 4. 978-988.
8.Campolongo, F., Cariboni, J., and Saltelli, A. 2007. An effective screening design
for sensitivity analysis of large models. Environmental Modeling and Software.
22: 10. 1509-1518.
9.Cariboni, J., Gatelli, D., Liska, R., and Saltelli, A. 2007. The role of sensitivity analysis in
ecological modelling. Ecological Modelling. 203: 1-2. 167-182.
10.Cibin, R., Sudheer, K.P., and Chaubey, I. 2010. Sensitivity and identifiability of stream flow
generation parameters of the SWAT model. Hydrological Processes. 24: 9. 1133-1148.
11.Chen, X., Ng, B.M., Sun, Y., and Tong, C.H. 2013. A computational method for simulating
subsurface flow and reactive transport in heterogeneous porous media embedded with
flexible uncertainty quantification. Water Resources Research. 49: 9. 5740-5755.
12.Clark, M.P., Kavetski, D., and Fenicia, F. 2011. Pursuing the method of multiple working
hypotheses for hydrological modelling. Water Resources Research. 47: 9. 1-16.
13.Cukier, R.I., Levine, H.B., and Shuler, K.E. 1978. Nonlinear sensitivity analysis of
multiparameter model system. J. Comp. Physic. 26: 1. 1-42.
14.Duan, Q., Gupta, V.K., and Sorooshian, S. 1992. Effective and efficient global optimization
for conceptual rainfall–runoff models. Water Resources Research. 28: 4. 1015-1031.
15.Fu, G., Kapelan, Z., and Reed, P. 2012. Reducing the complexity of multi-objective water
distribution system optimization through global sensitivity analysis. J. Water Resour. Plan.
Manage. 138: 3. 196-207.
16.Gan, Y., Duan, Q., Gong, W., Tong, C., Sun, Y., Chu, W., Ye, A., Miao, C., and Di, Z. 2014.
A comprehensive evaluation of various sensitivity analysis methods: a case study with a
hydrological model. Environmental Modelling and Software. 51: 269-285.
17.Gong, Y.W., Shen, Z.Y., Hong, Q., Liu, R.M., and Liao, Q. 2011. Parameter uncertainty
analysis in watershed total phosphorus modelling using the GLUE methodology.
Agriculture, Ecosystems and Environment. 142: 3-4. 246-255.
18.Granger, C.W.J., and Lin, J. 1994. Using the mutual information coefficient to identify lags
in nonlinear models. J. Time Seri. Anal. 15: 4. 371-384.
19.Herman, J.D., Reed, P.M., and Wagener, T. 2013. Time-varying sensitivity analysis clarifies
the effects of watershed model formulation on model behavior. Water Resources Research.
49: 3. 1400-1414.
20.Jakeman, A.J., and Hornberger, G.M. 1993. How much complexity is warranted in a rainfallrunoff model. Water Resources Research. 29: 8. 2637-2649.
21.King, D.M., and Perera, B.J.C. 2013. Morris method of sensitivity analysis applied to assess
the importance of input variables on urban water supply yield – a case study. J. Hydrol.
477: 17-32.
22.Li, J., Duan, Q., Gong, W., Ye, A., Dai, Y., Miao, C., Di, Z., Tong, C., and Sun, Y. 2013.
Assessing parameter importance of the Common Land Model based on qualitative and
quantitative sensitivity analysis. Hydrology and Earth System Sciences. 17: 8. 3279-3293.
23.Mishra, S., Deeds, N., and Ruskauff, G. 2009. Global sensitivity analysis techniques for
probabilistic ground water modelling. Ground Water. 47: 5. 727-744.
24.Mishra, S., and Knowlton, R.G. 2003. Testing for input–output dependence in performance
assessment models. In: Proceedings of the Tenth International High-Level Radioactive
Waste Management Conference, Las Vegas, Nevada. Pp: 882-887.
25.Morris, M.D. 1991. Factorial sampling plans for preliminary computational experiments.
Technometrics. 33: 2. 161-174.
26.Nandakumar, N., and Mein, R.G. 1997. Uncertainty in rainfall-runoff model simulation
and the implication for predicting the hydrologic effects of land use change. J. Hydrol.
192: 211-232.
27.Qi, W., Zhang, C., Chu, J., and Zhou., H. 2013. Sobol sensitivity analysis for TOPMODEL
hydrological model: A case study for the Biliu River Basin, China. J. Hydrol. Environ. Res.
1: 1. 1-10.
28.Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S.W. 2010. Understanding
predictive uncertainty in hydrologic modelling: The challenge of identifying input and
structural errors, Water Resources Research. 46: 5, W05521, doi:10.1029/2009WR008328.
29.Rosolem, R., Gupta, H.V., Shuttleworth, W.J., Zeng, X., and de Goncalves, L.G. 2012. A
fully multiple-criteria implementation of the Sobol’ method for parameter sensitivity
analysis. J. Geophysic. Res. 117. 117, D07103, doi:10.1029/2011JD016355.
30.Rouhani, R., and Farahi Moghadam, M. 2014. Application of the Genetic Algorithm
technique for optimization of the hydrologic Tank and SIMHHYD models’ parameters.
J. Range Water. Manage. 66. 4. 521-533. (In Persian)
31.Ruano, M.V., Ribes, J., Ferrer, J., and Sin, G. 2011. Application of the Morris method for
screening the influential parameters of fuzzy controllers applied to wastewater treatment
plants. Water Science and Technology. 63: 10. 2199-2206.
32.Ruano, M.V., Ribes, J., Seco, A., and Ferrer, J. 2012. An improved sampling strategy based
on trajectory design for application of the Morris method to systems with many input factors.
Environmental Modelling and Software. 37: 11. 103-109.
33.Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. 2004. Sensitivity analysis in
practice a guide to assessing scientific models. John Wiley & Sons Ltd, The Atrium,
Southern Gate, Chichester, West Sussex PO19 8SQ, England, 219p.
34.Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
and Tarantola, S. 2008. Global Sensitivity Analysis. The Primer. John Wiley and Sons,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 292p.
35.Sobol, I.M. 2001. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and Computation in Simulation. 55: 1-3. 271-280.
36.Sobol, I.M. 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical
Modelling and Computational Experiment. 1: 4. 407-417.
37.Song, X., Zhang, J., Zhan, Ch., Xuan, Y., Ye, M., and Xu, C.H. 2015. Global sensitivity
analysis in hydrological modelling: Review of concepts, methods, theoretical framework and
applications. J. Hydrol. 523. 739-757.
38.Tang, Y., Reed, P., van Werkhoven, K., and Wagener, T. 2007a. Advancing the
identification and evaluation of distributed rainfall-runoff models using global sensitivity
analysis. Water Resources Research. 43: 6.DOI: 10.1029/2006WR005813.
39.Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K. 2007b. Comparing sensitivity
analysis methods to advance lumped watershed model identification and evaluation.
Hydrology and Earth System Sciences. 11: 2. 793-817.
40.Tong, C., and Graziani, F. 2008. A practical global sensitivity analysis methodology for
multi-physics applications. Computational methods in transport: verification and validation.
Lecture Notes in Computational Science and Engineering. 62: 277-299.
41.Vanrolleghem, P.A., Mannina, G., Cosenza, A., and Neumann, M. 2015. Global sensitivity
analysis for urban water quality modelling: Terminology, convergence and comparison of
different methods. J. Hydrol. 522: 339-352.
42.Vertessy, R.A., Hatton, T.J., Shaughnessy, P.J., and Jayasuriya, M.D. 1993. Predicting water
yield from a Mountach forest catchment using a terrain analysis based catchment model.
J. Hydrol. 150: 665-700.
43.Wainwright, H., Finsterle, M., Jung, Y., Zhou, Q., and Birkholzer, J.T. 2014. Making sense
of global sensitivity analysis. Computers and Geosciences. 65: 84-94.
44.Zeng, X., Wang, D., and Wu, J. 2012. Sensitivity analysis of the probability distribution of
groundwater level series based on information entropy. Stochastic Environmental Research
and Risk Assessment. 26: 3. 345-356.
45.Zhang, C., Chu, J., and Fu, G. 2013. Sobol’s sensitivity analysis for a distributed
hydrological model of Yichun river basin, China. J. Hydrol. 480: 58-68.