کاربرد آنالیز بیز و فیلتر ذره‌ای در مدل‌های بارش-رواناب و تحلیل عدم قطعیت

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا

2 گروه آب دانشگاه بو علی سینا همدان

چکیده

سابقه و هدف: استفاده از مدل‌های هیدرولوژیکی و انجام پیش‌بینی در مطالعات مختلف منابع آب یک ضرورت می‌باشد. پیش‌بینی جریان خروجی از حوضه‌های آبریز با توجه به پیچیدگی‌های موجود در چرخه هیدرولوژیکی همواره با انجام فرض‌هایی همراه است. با توجه به ساده‌سازی در روابط توسعه داده شده در ساختار مدل‌های بارش-رواناب و فرضیات بکار رفته در آن‌ها، پیش‌بینی‌ها همواره با عدم قطعیت همراه می‌باشند. منابع عدم قطعیت در این مدل‌ها را می‌توان در سه دسته که ناشی از بکارگیری پارامترها، ساختار مدل و داده‌های مورد استفاده می‌باشند، دسته‌بندی نمود. لزوم تدقیق پیش‌بینی‌ها و ارائه عدم قطعیت مدل‌ها بایستی مورد توجه قرار گرفته و برای تحلیل این موضوع روش‌های مختلفی ارائه شده است. از جمله روش‌های پیشنهادی شیوه بروزرسانی داده‌ها می‌باشد و فیلتر ذره‌ای از روش‌های توسعه داده شده در این خصوص می‌باشد. هدف از این پژوهش استفاده از روش فیلتر ذره‌ای در بروزرسانی و بهبود پیش‌بینی جریان آب شبیه‌سازی شده توسط مدل‌ بارش-رواناب HYMOD با لحاظ جریان مشاهداتی می‌باشد. همچنین با کاربرد این روش کمی‌سازی عدم قطعیت و کاهش آن با توجه به منابع مختلف خطا مورد ارزیابی قرار گرفت.
مواد و روش‌ها: در این مطالعه، برای تدقیق پیش‌بینی‌ها از شیوه بروزرسانی داده‌ها استفاده گردید. این روش با بکارگیری فیلتر ذره‌ای، تخمین متوالی بیز و تابع توزیع پسین مقدار رطوبت مدل Hymod و پارامترهای آن را در حوضه آبریز کسیلیان با مساحت حدود 67 کیلومتر مربع در مقیاس روزانه محاسبه شد. فیلتر ذرهای بر پایه معادله بیز و تابع حداکثر درستنمایی خطاها در بازه زمانی مورد نظر می‌باشد. ضمناً در بکارگیری این شیوه باید از روش ترکیبی بازنمونه‌گیری احتمالاتی نیز استفاده کرد. این روش از واگرایی تحلیل‌ها جلوگیری کرده و همچنین مشکلاتی نظیر تبهگنی و پدیده غنی‌سازی دسته ذرات و میل نمودن وزن دسته ذرات به عدد واحد را تصحیح می‌نماید.
یافته‌ها : روش فیلتر ذره‌ای استفاده از پارامترهای مدل در شبیه‌سازی و پیش‌بینی جریان با تولید دسته پارامترهای تصادفی و ایجاد توزیع پیشین را امکان‌پذیر می‌نماید. این شیوه در تدقیق پیش‌بینی‌ها و استفاده توأمان از متغیر رطوبت خاک و پارامترها در تحلیل‌ها مؤثر است. همچنین با تعریف تابع درستنمایی خطای اولیه و بکار بردن تئوری بیز نسبت به اصلاح پیش‌بینی‌ها کمک می‌نماید. بعلاوه این روش تابع چگالی احتمال پسین پارامترها را نیز ارائه نموده و تابع چگالی اولیه را اصلاح می‌کند.
نتیجه‌گیری: نتایج نشان داد که استفاده از روش فیلتر ذره‌ای در ترکیب با شیوه بازنمونه‌گیری آماری در بروزرسانی هیدرولوژیکی سبب تدقیق پیش‌بینی‌ها در حوضه آبریز کسیلیان می‌گردد. همچنین روش فیلتر ذره‌ای سبب می‌گردد که شاخص نش- ساتکلیف در مقایسه با شیوه متداول در شبیه‌سازی و پیش‌بینی جریان، 22 درصد افزایش داشته و مقدار آن از 55/0 به 67/0 برسد.

کلیدواژه‌ها


عنوان مقاله [English]

Bayesian analysis and particle filter application in rainfall-runoff models and quantification of uncertainty

نویسندگان [English]

  • Mojtaba Ahmadizade 1
  • Safar Maroufi 2
1 Bualisinauniversity
2
چکیده [English]

Background and objectives: Applying hydrologic models and forecast is a necessity in different studies in water resources. There should be multiple assumptions in forecasting the outflow of watersheds due to different complex relations in hydrologic cycle. Because of assumptions and simplifications those applied in the structure of models and developed relations, forecasts made by rainfall runoff models are always subject to uncertainties. Different sources of uncertainty are categorized into three parts: first, the uncertainty attributed to the applied data, second, the structure of model and third, and the parameters. It is also necessary to address uncertainties and improve the precision of the forecasts. Therefore, there are multiple methods developed to analyze uncertainties. For this aim, data assimilation is a recommended approach and particle filter method is one of the developed models in this regard. The main goal of this research is to apply particle filter to update and improve the HYMOD rainfall runoff model forecasts based on observed stream flow. In addition, by the use of this approach, quantification and decreasing the uncertainty is evaluated based on different sources of error.
Materials and methods: In this study, improving the forecasts is implemented by data assimilation approach. To this aim, particle filter method, successive Bayesian estimation and posterior probability density function are applied for obtaining the soil moisture and Hymod parameters in daily scale in Kassilian river basin with approximately 67 square kilometers area. Particle filter is based on Bayes equation and maximum likelihood function of errors for the given time period. Moreover, this method should be combined with statistical resampling that prevents divergence of the analysis, and corrects degeneracy, sample impoverishment of particles and tendency of the state variables particle weights to unit value (1).
Results: Applying particle filter method makes it possible to use the intended model parameters for simulating and forecasting by random ensemble parameters generation and calculating prior probability density function. This method is also effective for precising forecasts and simultaneous application of parameters and soil moisture variable in analysis. Also this method helps to modify the forecasts using Baysian theory and definition of primary errors maximum likelihood function. In addition, this method also represents the posterior probability density function and corrects the prior density function.
Conclusion: The results show applicability of particle filter method in combination with statistical resampling for hydrological data assimilation and improvement of the precision of forecasts of outflow from Kassilian river basin. It is shown that, the applied method improved the Nash-Sutcliffe statistic in comparison with open loop procedure. As the Nash-Sutcliffe statistic improved by 22%, rising from 0.55 to 0.67.

کلیدواژه‌ها [English]

  • HyMod model
  • particle filter
  • Data assimilation
  • Resampling
  • Degeneracy
1.Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle
filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Processess.
50: 2. 174-189.
2.Beven, K.J., and Freer, J. 2001. Equifinality, data assimilation and uncertainty estimation in
mechanistic modelling of complex environmental systems. J. Hydrol. 249: 11-29.
3.Boyle, D.P. 2000. Multicriteria calibration of hydrological models. PhD Dissertation,
Department of Hydrology and Water Resources. University of Arizona, 145p.
4.Bulygina, N., and Gupta, H. 2009. Estimating the uncertain mathematical structure of a water
balance model via Bayesian data assimilation. Water Resour. Res. 45: W00B13.
5.Clark, M.P., and Vrugt, J.A. 2006. Unraveling uncertainties in hydrologic model calibration:
Addressing the problem of compensatory parameters. Geophys. Res. Lett. 33 (L06406): 1-5.
6.DeChant, C., and Moradkhani, H. 2012. Examining the effectiveness and robustness of
sequential data assimilation methods for quantification of uncertainty in hydrologic
forecasting. Water Resour. Res. 48: W04518.
7.Duan, Q., Sorooshian, S., and Gupta, V.K. 1992. Effective and efficient global optimization
for conceptual rainfall-runoff models. Water Resour. Res. 28: 4. 1015-1031.
8.Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi geostrophic model
using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143-10162.
9.Gordon, N., Salmond, D., and Smith, A.F.M. 1993. Novel approach to nonlinear and
non-Gaussian Bayesian state estimation, Proc. Inst. Electr. Eng. 140: 107-113.
10.Leisenring, M., and Moradkhani, H. 2011. Snow water equivalent prediction using Bayesian
data assimilation methods. Stoch. Environ. Res. Risk Assess. 25: 2. 253-270.
11.Li, T., Gannan, Y., and Wang, L. 2016. Particle Filter with Novel Nonlinear Error
Model for Miniature Gyroscope-Based Measurement While Drilling Navigation. Sensors.
16: 3. 371-394.
12.Liu, J.S., Chen, R., and Logvinenko, T. 2001. A theoretical framework for sequential
importance sampling and resampling, in Sequential Monte Carlo Methods in Practice.
Springer, New York, Pp: 225-246.
13.Miller, R.N., Ghil, M., and Guathiez, F. 1994. Advanced data assimilation in strongly
nonlinear dynamical systems. J. Atmos. Sci. 51: 8. 1037-1056.
14.Moore, R.J. 1985. The probability-distributed principle and runoff production at point and
basin scales. Hydrol. Sci. J. 30: 2. 273-297.
15.Moradkhani, H., Hsu, K.L., Gupta, H., and Sorooshian, S. 2005. Uncertainty assessment of
hydrologic model states and parameters: Sequential data assimilation using the particle filter.
Water Resour. Res. 41: 5. 1001-1017.
16.Pourreza Bilondi, M., Akhoond Ali, A.M., Gharaman, B., and Telvari, A.R. 2015.
Uncertainty analysis of a single event distributed rainfall-runoff model by using two
different Markov Chain Monte Carlo methods. J. Water Soil Conservation. 21: 5. 1-26.
(In Persian)
17.Salamon, P., and Feyen, L. 2009. Assessing Parameter, Precipitation and Predictive
Uncertainty in a Distributed Hydrological Model Using Sequential Data Assimilation with
the Particle Filter. J. Hydrol. 376: 428-442.
18.Sorooshian, S., Duan, Q., and Gupta, V.K. 1993. Calibration of rainfall-runoff models:
application of global optimization to the soil moisture accounting model. Water Resour. Res.
29: 4. 1185-1194.
19.Vrugt, J.A.C., Diks, G.H., Gupta, H.V., Bouten, W., and Verstraten, J.M. 2005. Improved
treatment of uncertainty in hydrologic modeling: Combining the strengths of global
optimization and data assimilation. Water Resour. Res. 41: 1-17.
20.Weerts, A.H., and El Serafy, G.Y.H. 2006. Particle filtering and ensemble Kalman filtering
for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res.
42: W09403.