برآورد روند کوانتایل های متغیرهای حداکثر سیلاب سالانه

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

دانشگاه علوم کشاورزی و منابع طبیعی گرگان-گروه مهندسی آب

چکیده

سابقه و هدف: بررسی روند تغییرات سیلاب حوضه‌ها در اغلب موارد تنها بر اساس تحلیل روند متغیر دبی اوج سیلاب با استفاده از آزمون‌های رایج پارامتری و ناپارامتری (رگرسیون خطی معمولی، من-کندال، سن و...) است. در کنار محدودیت‌های اولیه این روش‌ها معمولاً به برآورد میانگین یا میانه شرطی می‌پردازند و کوانتایل‌های مختلف را در نظر نمی‌گیرند در حالیکه برآورد دامنه مناسبی از کوانتایل‌های شرطی منجر به درک بسیار مناسبی از الگوی تغییرات می‌شود. هدف این تحقیق کاربرد روش رگرسیون کوانتایل برای برآورد روند زمانی (کوانتایل‌های شرطی) متغیرهای دبی اوج، حجم و تداوم سیلاب می‌باشد که این تحلیل منجر به درک مناسب‌تری از تغییرات متغیرهای حداکثر سیلاب‌های سالانه می‌شود.
مواد و روش‌ها:در گام اول سری زمانی حداکثر سیلاب سالانه ایستگاه هیدرومتری تله زنگ در جنوب غربی ایران با طول دوره آماری 55 سال مدنظر قرار گرفت و سری زمانی دبی اوج، حجم و تداوم حداکثر سیلاب سالانه استخراج گردید. در گام بعدی با استفاده از رگرسیون خطی معمولی تحلیل روند سری‌های متغیرهای حداکثر سیلاب سالانه انجام شد و کارایی مدل رگرسیون خطی با استفاده از معیارهای دقت برازش، آزمون معنی داری و تحلیل باقیمانده‌ها مورد بررسی قرار گرفت. سپس با در نظر گرفتن بازه (95/0-05/0 با گام 01/0) خطوط رگرسیون کوانتایل برای تحلیل روند متغیرهای حداکثر سیلاب سالانه برآورد شد و معیارهای دقت برازش و معنی داری آماری برای این خطوط تعیین گردید. با در نظر گرفتن کوانتایل های منتخب 95/0، 85/0، 75/0، 65/0، 55/0، 45/0، 35/0، 25/0، 15/0 و 05/0 نمودار خطوط رگرسیون کوانتایل برای متغیرهای سیلاب ترسیم شد.
یافته‌ها: نتایج رگرسیون خطی معمولی بیانگر روند مثبت برای متغیرهای سیلاب است اما تحلیل‌های تکمیلی نشان داد این روش نمی‌تواند ابزار مناسبی برای تحلیل روند متغیرهای سیلاب در این تحقیق باشد. کاربرد رگرسیون کوانتایل در مقایسه با رگرسیون خطی معمولی منجر به دسترسی به طیف وسیعی از شیب خطوط روند شده است. برای هر سه متغیر مورد بررسی 15% شیب خطوط رگرسیون کوانتایل بیشتر از شیب برآورد شده با روش رگرسیون خطی و در سایر موارد کمتر از ان بوده است. بررسی خطوط رگرسیون کوانتایل نشان می‌دهد خطوط رگرسیون کوانتایل برای متغیر حجم سیلاب در کوانتایل‌های کران بالایی و برای متغیرهای دبی اوج و تداوم سیلاب در کوانتایل‌های کران بالایی و بازه میانی از نظر آماری معنی دار بوده‌اند و در کران پایینی کوانتایلها تعداد معدودی از رابطه های خطی قابل پذیرش شده‌اند به طوریکه برای متغیرهای دبی اوج، حجم و تداوم سیلاب به ترتیب 59%، 31% و 73/0 موارد خطوط رگرسیون کوانتایل در سطح 05/0 از نظر آماری معنی دار بوده‌اند.دقت برازش خطوط رگرسیون کوانتایل در کران بالایی و بازه میانی کوانتایل‌ها بیشتر از کران پایینی می‌باشد.
نتیجه گیری: کاربرد رگرسیون کوانتایل می‌تواند بدون تأثیر از محدودیت‌های روش‌های متداول تحلیل روند متغیرهای سیلاب منجر به دسترسی به طیف وسیع‌تری از نتایج کاربردی تحلیل روند شود. همچنین تفاوت مشخصی بین شیب روند متغیرهای سیلاب برای کوانتایل‌های مختلف (بخصوص کوانتایل‌های کران بالا) در مقایسه با شیب برآورد شده توسط رگرسیون خطی معمولی وجود دارد بنابراین روش رگرسیون خطی معمولی نمی‌تواند ابزاری مناسب برای بررسی روند رویدادهای حدی باشد. نتایج نشان می‌دهد روند متغیرهای حدی سیلاب به مراتب بیشتر از روند برآورد شده با رگرسیون خطی معمولی می‌باشد و به عبارتی رگرسیون خطی در این تحقیق منجر به کم برآوردی شیب روند افزایشی متغیرهای سیلاب شده است. همچنین تحلیل چند متغیره روند سیلاب با استفاده از رگرسیون کوانتایل مشخص می‌کند به دلیل وجود روند قابل توجه در شرایط حدی برای هر سه متغیر سیلاب، تغییرات در پتانسیل خطر سیلاب به مراتب بیشتر از نتایج به دست آمده با استفاده از تحلیل تک متغیره می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Quantiles Trend Estimation of Variables of Annual Maximum Floods

نویسنده [English]

  • Meysam Salarijazi
Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Background and objectives: Investigation of the basin floods in most cases is only based on flood peak trend analysis using conventional parametric or non-parametric (ordinary linear regression (OLR), Mann-Kendall, Sen) tests. In addition to the primary restrictions, these methods usually are provided to estimate the conditional mean or median and do not consider different quantiles while assessing the appropriate domain of conditional quantiles leads to a very good understanding of trend pattern. The objective of this study is using quantile regression (QR) to estimate the time trend (conditional quantiles) of flood variables including peak, volume and duration that result in better understanding of variables of annual maximum floods (AMF).
Materials and methods: In the first step, AMF time series of Taleh-Zang hydrometry station located in southwestern Iran was considered and the time series of AMF peak flow, volume and duration were extracted.In the next step, trend analysis of AMF variables time series performed using OLR and their efficiency were investigated using fitting precision criteria, statistical significant test and residuals analysis. Then, QR lines were estimated for AMF variables trend analysis considering (0.05-0.95 with 0.01 steps) and their fitting precision criteria and statistical significant test were determined. Considering selected quantiles0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85 and 0.95 QR lines were plotted for AMF variables.
Results: The OLR results indicated positive trends for AMF variables but complementary analysis showed that this method cannot be a suitable analysis for AMF variables trend analysis in this research. The QR application resulted in wide range of line slopes in comparison with OLR method. For all three variables 15% of estimated line slopes using QR were more than their estimation by OLR. Investigation of QR lines indicated statistical significant regression lines of AMF volume were related to upper bound quantiles while for AMF peak and duration were related to quantiles mid bound plus upper bound and there were a few acceptable QR lines for lower bound for all three variables so that for AMF peak, volume and duration 59%, 31% and 73% of QR lines were statistical significant considering 0.05 significance level. The fitting precisions of QR lines of upper and mid bounds were more than lower bound.
Conclusion: The quantile regression can be used without affecting the limitations of conventional methods for AMF variables trend analysis to access a wider range of applied trend analysis. Also there are certain differences between AMF variables trend slopes (especially for upper bound quantiles) in comparison with those estimated with OLR therefore the OLR method could not be a useful tool for trend assessment of extreme events. The results show trend of extreme flood variables are significantly more than those estimated by OLR and in other words the OLR led to underestimation of AMF variables increasing trend slope. Moreover, multiple variables flood trend analysis using QR revealed that considering significant trends for three flood variables, the flood potential risk are significantly more than those estimated using single variable analysis.

کلیدواژه‌ها [English]

  • Quantile Regression
  • Ordinary Linear Regression
  • Trend
  • Flood Variables
 1.Adib, A., Ahmadeanfar, I., Salarijazi, M., Labibzadeh, M., and Vaghefi, M. 2012.
Optimization of released water from the Dez dam for supply of water demands in the
downstream of dam. Applied Mechanics and Materials (147: 187-190). Trans. Tech.
Publications.
2.Adib, A., Salarijazi, M., and Najafpour, K. 2010. Evaluation of synthetic outlet runoff
assessment models. J. Appl. Sci. Environ. Manage. 14: 3. 13-18.
3.Adib, A., Salarijazi, M., Shooshtari, M. M., and Akhondali, A.M. 2011. Comparison between
characteristics of geomorphoclimatic instantaneous unit hydrograph be produced by GcIUH
based Clark Model and Clark IUH model. J. Mar. Sci. Technol. 19: 2. 201-209.
4.Adib, A., Salarijazi, M., Vaghefi, M., Shooshtari, M.M., and Akhondali, A.M. 2010.
Comparison between GcIUH-Clark, GIUH-Nash, Clark-IUH and Nash-IUH models. Turk. J.
Engin. Environ. Sci. 34: 2. 91-104.
5.Ahmadianfar, I., Adib, A., and Salarijazi, M. 2015. Optimizing multireservoir operation:
Hybrid of bat algorithm and differential evolution. J. Water Resour. Plan. Manage.
142: 2. 05015010.
6.Anghileri, D., Pianosi, F., and Soncini-Sessa, R. 2014. Trend detection in seasonal data: from
hydrology to water resources. J. Hydrol. 511: 171-179.
7.Arnell, N.W., and Gosling, S.N. 2016. The impacts of climate change on river flood risk at the
global scale. Climatic Change, 134: 3. 387-401.
8.Bačová Mitková, V., and Halmová, D. 2014. Joint modeling of flood peak discharges,
volume and duration: a case study of the Danube River in Bratislava. J. Hydrol. Hydromech.
62: 3. 186-196.
9.Barbosa, S.M. 2008. Quantile trends in Baltic sea level. Geophysical Research Letters, 35: 22.
10.Barbosa, S.M., Scotto, M.G., and Alonso, A.M. 2011. Summarizing changes in air
temperature over Central Europe by quantile regression and clustering. Natural Hazards and
Earth System Sciences, 11: 12. 3227-3233.
11.Bouza-Deaño, R., Ternero-Rodriguez, M., and Fernández-Espinosa, A.J. 2008. Trend study
and assessment of surface water quality in the Ebro River (Spain). J. Hydrol. 361: 3. 227-239.
12.Bremnes, J.B. 2006. A comparison of a few statistical models for making quantile wind
power forecasts. Wind Energy, 9: 12. 3-11.
13.Brody, S.D., Highfield, W.E., and Blessing, R. 2015. An analysis of the effects of land use
and land cover on flood losses along the gulf of Mexico coast from 1999 to 2009. JAWRA
J. Amer. Water Resour. Assoc. 51: 6. 1556-1567.
14.Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M., and Nanni, T. 2004. Temperature,
precipitation and extreme events during the last century in Italy. Global and planetary
change, 40: 1. 141-149.
15.Buchinsky, M. 1998. Recent advances in quantile regression models: a practical guideline for
empirical research. J. Human Resour. Pp: 88-126.
16.Burn, D.H., and Elnur, M.A.H. 2002. Detection of hydrologic trends and variability.
J. Hydrol. 255: 1. 107-122.
17.Chamaillé-Jammes, S., Fritz, H., and Murindagomo, F. 2007. Detecting climate changes of
concern in highly variable environments: Quantile regressions reveal that droughts worsen in
Hwange National Park, Zimbabwe. J. Arid Environ. 71: 3. 321-326.
18.Changnon, S.A., and Demissie, M. 1996. Detection of changes in streamflow and floods
resulting from climate fluctuations and land use-drainage changes. Climatic change,
32: 4. 411-421.
19.Chen, H., Guo, S., Xu, C.Y., and Singh, V.P. 2007. Historical temporal trends of hydroclimatic variables and runoff response to climate variability and their relevance in water
resource management in the Hanjiang basin. J. Hydrol. 344: 3. 171-184.
20.Cunderlik, J.M., and Ouarda, T.B. 2006. Regional flood-duration–frequency modeling in the
changing environment. J. Hydrol. 318: 1. 276-291.
21.Delgado, J.M., Apel, H., and Merz, B. 2010. Flood trends and variability in the Mekong
river. Hydrology and Earth System Sciences, 14: 3. 407-418.
22.Eidipour, A., Akhondali, A.M., Zarei, H., and Salarijazi, M. 2016. Flood hydrograph
estimation using GIUH model in ungauged karst basins (Case study: Abolabbas Basin).
TUEXENIA, 36: 36. 26-33.
23.Eilers, P.H., and De Menezes, R.X. 2005. Quantile smoothing of array CGH data.
Bioinformatics, 21: 7. 1146-1153.
24.Elsner, J.B., Kossin, J.P., and Jagger, T.H. 2008. The increasing intensity of the strongest
tropical cyclones. Nature, 455: 7209. 92-95.
25.Francke, T., LópezTarazón, J.A., and Schröder, B. 2008. Estimation of suspended sediment
concentration and yield using linear models, random forests and quantile regression forests.
Hydrological Processes, 22: 25. 4892-4904.
26.Friederichs, P., and Hense, A. 2007. Statistical downscaling of extreme precipitation events
using censored quantile regression. Monthly weather review, 135: 6. 2365-2378.
27.Ganguli, P., and Reddy, M.J. 2013. Probabilistic assessment of flood risks using trivariate
copulas. Theoretical and applied climatology, 111: 1-2. 341-360.
28.Gao, G., Chen, D., Xu, C.Y., and Simelton, E. 2007. Trend of estimated actual
evapotranspiration over China during 1960-2002. J. Geophysic. Res. Atm. 112 (D11).
29.Ghorbani, Kh., Sohrabian, E., and Salarijazi, M. 2016. Evaluation of hydrological and
data mining models in monthly river discharge simulation and prediction (Case study:
Araz-Kouseh watershed). J. Water Soil Cons. 23: 1. 203-217.
30.Ghorbani, Kh., Sohrabian, E., Salarijazi, M., and Abdolhoseini, M. 2016. Prediction of
climate change impact on monthly river discharge trend using IHACRES hydrological model
(case study: Galikesh watershed). J. Water Soil Resour. Cons. 5: 4. 18-34.
31.Gocic, M., and Trajkovic, S. 2013. Analysis of changes in meteorological variables using
Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary
Change, 100: 172-182.
32.Greenville, A.C., Wardle, G.M., and Dickman, C.R. 2012. Extreme climatic events drive
mammal irruptions: regression analysis of 100year trends in desert rainfall and temperature.
Ecology and evolution, 2: 11. 2645-2658.
33.Guo, Y., and Shen, Y. 2015. Quantifying water and energy budgets and the impacts of
climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to
water resources. J. Hydrol. 527: 251-261.
34.Gustavsen, G.W., and Rickertsen, K. 2006. A censored quantile regression analysis of
vegetable demand: the effects of changes in prices and total expenditure. Can. J. Agric.
Econ. /Rev. Canadienne d'agroeconomie, 54: 4. 631-645.
35.Haddad, K., and Rahman, A. 2012. Regional flood frequency analysis in eastern Australia:
Bayesian GLS regression-based methods within fixed region and ROI framework–Quantile
Regression vs. Parameter Regression Technique. J. Hydrol. 430: 142-161.
36.Hardwick Jones, R., Westra, S., and Sharma, A. 2010. Observed relationships between
extreme subdaily precipitation, surface temperature and relative humidity. Geophysical
Research Letters, 37: 22.
37.Hooshmand, A., Salarijazi, M., Bahrami, M., Zahiri, J., and Soleimani, S. 2013. Assessment
of pan evaporation changes in South Western Iran. Afric. J. Agric. Res. 8: 16. 1449-1456.
38.Jiang, Y., Luo, Y., Zhao, Z., and Tao, S. 2010. Changes in wind speed over China during
1956–2004. Theoretical and Applied Climatology, 99: 3-4. 421-430.
39.Karmakar, S., and Simonovic, S.P. 2008. Bivariate flood frequency analysis: Part 1.
Determination of marginals by parametric and nonparametric techniques. J. Flood Risk
Manage. 1: 4. 190-200.
40.Karpouzos, D.K., Kavalieratou, S., and Babajimopoulos, C. 2010. Trend analysis of
precipitation data in Pieria Region (Greece). European Water, 30: 31-40.
41.Khang, Y.H., and Yun, S.C. 2010. Trends in general and abdominal obesity among Korean
adults: findings from 1998, 2001, 2005 and 2007 Korea National Health and Nutrition
Examination Surveys. J. Korean Med. Sci. 25: 11. 1582-1588.
42.Kisi, O., and Ay, M. 2014. Comparison of Mann–Kendall and innovative trend method for
water quality parameters of the Kizilirmak River, Turk. J. Hydrol. 513: 362-375.
43.Koenker, R. 2005. Quantile regression (No. 38). Cambridge university press.
44.Kumar, K.R., Kumar, K.K., and Pant, G.B. 1994. Diurnal asymmetry of surface temperature
trends over India. Geophysical Research Letters, 21: 8. 677-680.
45.Lee, K., Baek, H.J., and Cho, C. 2013. Analysis of changes in extreme temperatures using
quantile regression. Asia-Pacific J. Atm. Sci. 49: 3. 313-323.
46.Linares, J.C., Delgado-Huertas, A., and Carreira, J.A. 2011. Climatic trends and different
drought adaptive capacity and vulnerability in a mixed Abies pinsapo–Pinus halepensis
forest. Climatic change, 105: 1-2. 67-90.
47.López López, P., Verkade, J.S., Weerts, A.H., and Solomatine, D.P. 2014. Alternative
configurations of quantile regression for estimating predictive uncertainty in water level
forecasts for the upper Severn River: a comparison. Hydrology and Earth System Sciences
Discussions, 11: 2014.
48.Luce, C.H., and Holden, ZA. 2009. Declining annual streamflow distributions in the Pacific
Northwest United States, 1948-2006. Geophysical Research Letters, 36: 16.
49.Luo, P., He, B., Takara, K., Razafindrabe, B.H., Nover, D., and Yamashiki, Y. 2011.
Spatiotemporal trend analysis of recent river water quality conditions in Japan. J. Environ.
Monitor. 13: 10. 2819-2829.
50.Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H. 2004. European
seasonal and annual temperature variability, trends and extremes since 1500. Science,
303: 5663. 1499-1503.
51.Machado, J.A., and Mata, J. 2005. Counterfactual decomposition of changes in wage
distributions using quantile regression. J. Appl. Econom. 20: 4. 445-465.
52.Mallakpour, I., and Villarini, G. 2015. The changing nature of flooding across the central
United States. Nature Climate Change, 5: 3. 250-254.
53.Marofi, S., Soleymani, S., Salarijazi, M., and Marofi, H. 2012. Watershed-wide trend
analysis of temperature characteristics in Karun-Dez watershed, southwestern Iran.
Theoretical and Applied Climatology, 110: 1-2. 311-320.
54.Mazvimavi, D. 2010. Investigating changes over time of annual rainfall in Zimbabwe.
Hydrology and Earth System Sciences, 14: 12. 2671-2679.
55.Melly, B. 2005. Public-private sector wage differentials in Germany: Evidence from quantile
regression. Empirical Economics, 30: 2. 505-520.
56.Moazed, H., Salarijazi, M., Moradzadeh, M., and Soleymani, S. 2012. Changes in rainfall
characteristics in Southwestern Iran. Afric. J. Agric. Res. 7: 18. 2835-2843.
57.Mondal, A., Kundu, S., and Mukhopadhyay, A. 2012. Rainfall trend analysis by MannKendall test: A case study of north-eastern part of Cuttack district, Orissa. Int. J. Geol. Earth
Environ. Sci. 2: 1. 70-78.
58.Monteiro, A., Carvalho, A., Ribeiro, I., Scotto, M., Barbosa, S., Alonso, A., and Borrego, C.
2012. Trends in ozone concentrations in the Iberian Peninsula by quantile regression and
clustering. Atmospheric environment, 56: 184-193.
59.Moslemzadeh, M., Salarizazi, M., and Soleymani, S. 2011. Application and assessment of
kriging and cokriging methods on groundwater level estimation. J. Amer. Sci. 7: 7. 34-39.
60.Muzik, I. 2002. A first-order analysis of the climate change effect on flood frequencies
in a subalpine watershed by means of a hydrological rainfall–runoff model. J. Hydrol.
267: 1. 65-73.
61.Nielsen, H.A., Madsen, H., and Nielsen, T.S. 2006. Using quantile regression to extend
an existing wind power forecasting system with probabilistic forecasts. Wind Energy,
9: 12. 95-108.
62.Ohana-Levi, N., Karnieli, A., Egozi, R., Givati, A., and Peeters, A. 2015. Modeling the
Effects of Land-Cover Change on Rainfall-Runoff Relationships in a Semiarid, Eastern
Mediterranean Watershed. Advances in Meteorology, 2015.
63.Partal, T., and Kahya, E. 2006. Trend analysis in Turkish precipitation data. Hydrological
processes, 20: 9. 2011-2026.
64.Petrow, T., and Merz, B. 2009. Trends in flood magnitude, frequency and seasonality in
Germany in the period 1951–2002. J. Hydrol. 371: 1. 129-141.
65.Piticar, A., Mihăilă, D., Lazurca, L.G., Bistricean, P.I., Puţuntică, A., and Briciu, A.E. 2016.
Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova.
Theoretical and Applied Climatology, 124: 3-4. 1133-1144.
66.Poff, N.L., and Zimmerman, J.K. 2010. Ecological responses to altered flow regimes: a
literature review to inform the science and management of environmental flows. Freshwater
Biology, 55: 1. 194-205.
67.Quesada, B., Vautard, R., Yiou, P., Hirschi, M., and Seneviratne, S.I. 2012. Asymmetric
European summer heat predictability from wet and dry southern winters and springs. Nature
Climate Change, 2: 10. 736-741.
68.Reich, B.J. 2012. Spatiotemporal quantile regression for detecting distributional changes in
environmental processes. J. Royal Stat. Soc. Series C (Applied Statistics), 61: 4. 535-553.
69.Rodrigo, F.S., and Trigo, R.M. 2007. Trends in daily rainfall in the Iberian Peninsula from
1951 to 2002. Inter. J. Climatol. 27: 4. 513-529.
70.Roscoe, K.L., Weerts, A.H., and Schroevers, M. 2012. Estimation of the uncertainty in water
level forecasts at ungauged river locations using quantile regression. Inter. J. River Basin
Manage. 10: 4. 383-394.
71.Sadeghian, M.S., Salarijazi, M., Ahmadianfar, I., and Heydari, M. 2016. Stage-Discharge
relationship in tidal rivers for tidal flood condition. Fresenius Environmental Bulletin,
25: 10. 4111-4117.
72.Salarijazi, M., Abdolhosseini, M., Ghorbani, K., and Eslamian, S. 2016. Evaluation of quasimaximum likelihood and smearing estimator to improve sediment rating curve estimation.
Inter. J. Hydrol. Sci. Technol. 6: 4. 359-370.
73.Salarijazi, M., Akhond-Ali, A.M., Adib, A., and Daneshkhah, A. 2012. Trend and
change-point detection for the annual stream-flow series of the Karun River at the Ahvaz
hydrometric station. Afric. J. Agric. Res. 7: 32. 4540-4552.
4574.Salarijazi, M., Akhond-Ali, A.M., Adib, A., and Dneshkhah, A.R. 2015. Bivariate FloodFrequency Analysis Using the Copula Functions. J. Irrig. Sci. Engin. 37: 4. 29-38.75.Sankarasubramanian, A., and Lall, U. 2003. Flood quantiles in a changing climate: Seasonalforecasts and causal relations. Water Resources Research, 39: 5.76.Schmocker-Fackel, P., and Naef, F. 2010. More frequent flooding? Changes in floodfrequency in Switzerland since 1850. J. Hydrol. 381: 1. 1-8.77.Shamsudduha, M., Chandler, R.E., Taylor, R.G., and Ahmed, K.M. 2009. Recent trends ingroundwater levels in a highly seasonal hydrological system: the Ganges-BrahmaputraMeghna Delta. Hydrology and Earth System Sciences, 13: 12. 2373-2385.78.Shiau, J.T., and Chen, T.J. 2015. Quantile regression-based probabilistic estimationscheme for daily and annual suspended sediment loads. Water Resources Management,29: 8. 2805-2818.79.Shiau, J.T., and Huang, W.H. 2015. Detecting distributional changes of annual rainfallindices in Taiwan using quantile regression. J. Hydro-Environ. Res. 9: 3. 368-380.80.Shiau, J.T., and Lin, J.W. 2016. Clustering quantile regression-based drought trends inTaiwan. Water Resources Management, 30: 3. 1053-1069.81.Stojković, M., Ilić, A., Prohaska, S., and Plavšić, J. 2014. Multi-temporal analysis of meanannual and seasonal stream flow trends, including periodicity and multiple non-linearregression. Water Resources Management, 28: 12. 4319-4335.82.Tareghian, R., and Rasmussen, P.F. 2013. Statistical downscaling of precipitation usingquantile regression. J. Hydrol. 487: 122-135.83.Tharme, R.E. 2003. A global perspective on environmental flow assessment: emergingtrends in the development and application of environmental flow methodologies for rivers.River research and applications, 19: 5‐6. 397-441.84.Timofeev, A.A., and Sterin, A.M. 2010.Using the quantile regression method to analyzechanges in climate characteristics. Russian Meteorology and Hydrology, 35: 5. 310-319.85.Tøttrup, A.P., Thorup, K., and Rahbek, C. 2006. Patterns of change in timing of springmigration in North European songbird populations. J. Avian Biol. 37: 1. 84-92.86.Villarini, G., Smith, J.A., Serinaldi, F., and Ntelekos, A.A. 2011. Analyses of seasonal andannual maximum daily discharge records for central Europe. J. Hydrol. 399: 3. 299-312.87.Wang, Y., Jiang, T., Bothe, O., and Fraedrich, K. 2007. Changes of pan evaporationand reference evapotranspiration in the Yangtze River basin. Theoretical and AppliedClimatology, 90: 1-2. 13-23.88.Wasko, C., and Sharma, A. 2014. Quantile regression for investigating scaling of extremeprecipitation with temperature. Water Resources Research, 50: 4. 3608-3614.89.Weerts, A.H., Winsemius, H.C., and Verkade, J.S. 2011. Estimation of predictivehydrological uncertainty using quantile regression: examples from the National FloodForecasting System (England and Wales). Hydrology and Earth System Sciences, 15: 1.90.Xiao, Z. 2009. Quantile cointegrating regression. J. Econom. 150: 2. 248-260.91.Yenilmez, F., Keskin, F., and Aksoy, A. 2011.Water quality trend analysis in Eymir Lake,Ankara. Physics and Chemistry of the Earth, Parts A/B/C, 36: 5. 135-140.92.Yue, S., and Wang, C. 2004. The Mann-Kendall test modified by effective sample sizeto detect trend in serially correlated hydrological series. Water Resources Management,18: 3. 201-218.93.Yue, S., Ouarda, T.B., Bobée, B., Legendre, P., and Bruneau, P. 2002. Approach fordescribing statistical properties of flood hydrograph. J. Hydrol. Engin. 7: 2. 147-153.94.Yue, S., Pilon, P., and Cavadias, G. 2002. Power of the Mann–Kendall and Spearman's rhotests for detecting monotonic trends in hydrological series. J. Hydrol. 259: 1. 254-271.95.Zhang, L., and Singh, V.P. 2006. Bivariate flood frequency analysis using the copulamethod. J. Hydrol. Engin. 11: 2. 150-164.