ارزیابی عملکرد توابع کرنل در تخمین جریان رودخانه‌ها با استفاده از ماشین بردار پشتیبان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجو

2 دانشیار گروه مهندسی آب دانشگاه تبریز

چکیده

سابقه و هدف: پیش‌بینی دقیق رواناب رودخانه‌ها نقش مهمی در مدیریت بهینه منابع آب در دسترس دارد. در سال‌های اخیر، ماشین بردار پشتیبان (SVM) که یکی از مهمترین مدل‌های داده‌کاوی است برای این منظور مورد توجه قرار گرفته است. این مدل یک سیستم یادگیری کارآمد بر مبنای تئوری بهینه‌سازی مقید است که از اصل استقرای کمینه‌سازی خطای ساختاری استفاده کرده و منجر به یک جواب بهینه کلی می‌گردد. همانند مدل‌های داده‌کاوی دیگر مدل SVM نیز می‌تواند در مواقعی که فقط داده‌های رواناب در دسترس می‌باشد جهت شبیه‌سازی رواناب مورد استفاده قرار گیرد (مدل‌سازی خودهمبسته). به طور معمول سه تابع کرنل پایه شعاعی (RBF)، چند جمله‌ای درجه d و خطی در ماشین بردار پشتیبان مورد استفاده قرار می‌گیرند که کاربرد هر یک از این توابع با پارامترهای مختلف در تخمین رواناب رودخانه‌ها ممکن است منجر به نتایج متفاوتی شود. بنابراین ارزیابی کارایی و دقت هر یک از این توابع و انتخاب تابع کرنل مناسب در پیش‌بینی جریان رودخانه ضروری است. همچنین از آنجا که مدل‌های سری زمانی AR، ARMA و ARIMA از مد‌ل‌های اصلی در شبیه‌سازی خودهمبسته رواناب می‌باشند لذا می‌توان از طریق مقایسه عملکرد هر یک از توابع کرنل با این مدل‌ها، دقت نسبی این توابع در این زمینه را مورد بررسی قرار داد. بنابراین ارزیابی دقت هر یک از توابع کرنل در شبیه‌سازی رواناب ماهانه و مقایسه عملکرد آنها با مدل‌های سری زمانی هدف اصلی این تحقیق را رقم می‌زند.
مواد و روش‌ها: در این تحقیق حوضه خرخره‌چای به عنوان منطقه مورد مطالعه انتخاب شده و جریان ماهانه مشاهداتی این حوضه در ایستگاه آب‌سنجی سنته جهت واسنجی و اعتبارسنجی مدل‌ها بکار گرفته شد. برای این منظور، در ابتدا 75 درصد از داده‌های جریان ماهانه (1384-1367) برای واسنجی مدل‌ها انتخاب شده و 25 درصد داده‌ها (1390-1385) جهت اعتبارسنجی مدل‌ها استفاده شد. سپس توزیع احتمالاتی داده‌های جریان ماهانه در ایستگاه آب‌سنجی سنته براساس آزمون-های کلموگروف- اسمیرنوف و شاپیرو- ویلک مورد بررسی قرار گرفته و نرمال‌سازی توزیع داده‌ها انجام گرفت. پس از بهینه‌سازی پارامترهای مربوط به هر یک از توابع کرنل، مقادیر جریان ماهانه در ایستگاه آب‌سنجی سنته پیش‌بینی شده و عملکرد این توابع با استفاده از جذر میانگین مربعات خطا (RMSE) و ضریب همبستگی (CC) مورد ارزیابی قرار گرفت.
یافته‌ها: بررسی‌های این تحقیق نشان داد که اگرچه تفاوت معنی‌دار بین نتایج سه تابع کرنل وجود ندارد، ولی تابع کرنل چند جمله‌ای درجه 4 با مقادیر ضریب همبستگی و جذر میانگین مربعات خطا به ترتیب برابر با 86/0 و 88/5 (مترمکعب در ثانیه) در دوره تست، در مقایسه با توابع کرنل دیگر از دقت بالا و عملکرد بهتری در پیش‌بینی جریان ماهانه برخوردار است. همچنین نتایج نشان داد که مدل (6،2)ARMA با مقادیر ضریب همبستگی و مجذور میانگین مربعات خطا به ترتیب برابر با 82/0 و 47/6 (مترمکعب در ثانیه) در دوره تست، نسبت به سایر مدل‌های سری زمانی عملکرد خوبی را در پیش‌بینی جریان ماهانه حوضه خرخره‌چای دارا می‌باشد.
نتیجه‌گیری: در نهایت مقادیر جریان ماهانه پیش‌بینی شده با استفاده از تابع کرنل چند جمله‌ای درجه 4 (به عنوان نماینده مدل SVM) با نتایج مدل (6،2)ARMA (به عنوان نماینده مدل‌های سری زمانی) مقایسه گردید و این نتیجه حاصل شد که مدل SVM از کارایی بهتری نسبت به مدل‌های سری زمانی در پیش‌بینی جریان ماهانه حوضه خرخره‌چای برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Kernel Functions Performance in River Flow Estimation using Support Vector Machine

نویسندگان [English]

  • Mohammad Isazadeh 1
  • hojat ahmadzadeh 1
  • Mohammad Ali Ghorbani 2
چکیده [English]

Background and objectives: Accurate prediction of river flow has an important role in the optimum management of available water resources. In recent years, support vector machine (SVM) that is one of the most important data-driven models, has been considered in this regards. This model is a useful learning system based on constrained optimization theory that uses induction of structural error minimization principle and results a general optimized answer. Such as other data mining models, the SVM model can also be used for runoff simulation when the only available data is runoff (autoregressive simulation). Typically, three kernel functions, namely, radial basis, polynomial of degree d and linear are applied in SVM that use of each function with various parameters for river flow estimation may have different results. Therefore, it is necessary to evaluate the accuracy of each of these functions and select the appropriate kernel function for runoff simulation. Since time series models, namely, AR, ARMA and ARIMA are the main models for autoregressive simulation of runoff, relative accuracy of kernel functions can be investigated by comparing their performance with these models. Therefore, assessment of the accuracy of kernel functions for monthly river flow simulation and comparison of their performance with time series models is main aim of this study.
Materials and Methods: In this study Kherkherehchiy river basin was selected as the study area and observed monthly river flow of this basin in the Santeh gauging station were applied for calibration and validation of models. For this purpose, first 75 percent of monthly river flow data (1367-1384) were selected to calibrate models and 25 percent of data (1385-1390) were used to validate models. Next, probability distribution of monthly river flow data in Santeh station were studies based on Kolmogorov-Smirnov and Shapiro- Wilk test and then normalization of data distribution were done. After optimization of parameters for each kernel functions the monthly flow values were predicted in Santeh station and the performance of these functions were evaluated using root mean square errors (RMSE) and the correlation coefficient (CC).
Results: The investigations of this study indicated that although there is no significant difference in the results of three kernel functions, but the polynomial kernel function of degree 4 with CC and RMSE values of 0.86 and 5.88 (m3/sec) respectively in the testing period, has high accuracy and better performance in prediction of monthly flow in comparison to other kernel functions. Also the results showed that ARMA(6,2) with CC and RMSE values of 0.82 and 6.47 (m3/sec) respectively in the testing period, has good performance in prediction of Kherkherehchiy monthly flow compared to the other time series models.
Conclusion: Finally, the predicted monthly river flow using polynomial kernel function of degree 4 (as a representative of SVM model) was compared with the results of ARMA(6,2) (as a representative of time series model) and this conclusion was obtained that the SVM model has a better performance than time series models in the monthly river flow prediction of the Kherkherehchiy basin

کلیدواژه‌ها [English]

  • River Flow Prediction
  • Support vector machine
  • Kernel functions
  • Time Series Models
  • Kherkherehchiy River Basin
1.Adamowski, J. 2013. Using support vector regression to predict direct runoff, base flow
and total flow in a mountainous watershed with limited data in Uttaranchal, India. Versita J. 45: 1. 71-83.
2.Adeli, A., Fathi-Moghadam, M., and Musavi Jahromi, H. 2014. Using Stochastic Models to Produce Artificial Time Series and Inflow Prediction: A Case Study of Talog Dam reservoir, Khuzestan Province, Iran. J. Inter. Bull. Water Resour. Dev. 2: 5. 1-13. (In Persian)
3.Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. 2005. Multi-time scale stream flow predictions: The Support vector machines approach. J. Hydrol. 318: 1-4. 7-16.
4.Azani, A., Fazelifard, M.H., and Ghorbani, M.A. 2014. Simulation of Urmia Lake water level using support vector machines and artificial neural network. The 13th Conference of the hydraulic Iran, Tabriz University. (In Persian) 
5.Baofeng, G., Gunn, S.R., Damper, R.I., and Nelson, J.D.B. 2008. Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification. IEEE Transactions on Image Processing. 17: 4. 622-629.
6.Bani Habib, M.A., and Valipour, M. 2008. Comparative assessment of ARMA, ARIMA and autocorrelated artificial neural network models in forecasting inflow to the Dez reservoir. First International Conference on Water Crisis, Zabul University. (In Persian)
7.Basak, D., Pal, S., and Patranabis, D.C. 2007. Support vector regression. Neural Inf. Process. 11: 203-225.
8.Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. 1994. Time Series Analysis: Forecasting and Control. Third edition, Prentice Hall. 598p.
9.Damle, C., and Yalcin, A. 2007. Flood prediction using time series data mining. J. Hydrol. 333: 2-4. 305-316.
10.Dibike, Y., Velickov, S., Solomatine, D., and Abbott, M. 2001. Model induction with of support vector machines: Introduction and applications. J. Comp. Civil Engin. 15: 3. 208-216.
11.Eskandari, A., Nouri, R., Meraji, H., and Kiaghadi, A. 2012. Development of appropriate model based on artificial neural network and support vector machine for forecasting 5-Days Biochemical Oxygen Demand (BOD5). J. Ecol. 61: 71-82. (In Persian)
12.Fletcher, R. 1987. Practical Methods of Optimization. Wiley, New York. 456p.
13.Jain, A., and Kumar, A.M. 2007. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Com. J. 7: 2. 585-592.
14.Jian, Y., Cheng, C.T., and Chau, K.W. 2006. Using support vector machines for long-term discharge prediction. J. Hydrol. Sci. – des Sci. Hydrol. 51: 4. 599-612.
15.Kavzoglu, T., and Colkesen, I. 2009. A kernel functions analysis for support vector machines for land cover classification. Inter. J. Appl. Earth Obs. Inf. 11: 5. 352-359.
16.Kakaei Lafadani, E., Moghaddam Nia, A., Ahmadi, A., Jajarmizadeh, M., and Ghafari, M. 2013. Stream flow simulation using SVM, ANFIS and NAM models (A Case study). Caspian J. Appl. Sci. Res. 2: 4. 86-93.
17.Liu, G.Q. 2011. Comparison of Regression and ARIMA models with Neural Network models to forecast the daily streamflow. PhD thesis, University of Delaware. 545p.
18.Misra, D., Oommen, T., Agarwal, A., and Mishra, S.K. 2009. Application and analysis of Support Vector machine based simulation for runoff and sediment yield. J. Biosyst. Engin. 103: 9. 527-535.
19.Moharrampour, M., Mehrabi, A., Hajikandi, H., and Sohrabi, S. 2013. Comparison of Support Vector Machines (SVM) and Autoregressive integrated moving average (ARIMA) in daily flow forecasting. J. River Engin. 1: 1. 34-45.
20.Salas, J.D. 1993. Analysis and modeling of hydrological time series. P 1-19, In: R, David (Ed.), Handbook of Hydrology, McGraw-Hill, New York.
21.Vapnik, V., and Chervonenkis, A. 1991. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis. 1: 3. 283-305.
22.Vapnik, V., and Cortes, C. 1995. Support vector networks. Machine Learning. 20: 273-297.
23.Wei, W.W.S. 2006. Time Series analysis: univariate and multivariate methods (second edition). Greg Tobin Publisher, ISBN 0-321-32216-9.
24.Yang, K., Shan, G., and Zhao, L. 2006. Correlation Coefficient Method for Support Vector Machine Input Samples. International Conference on Machine Learning and Cybernetics. Pp: 2857-2861.
25.Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 396: 1-2. 128-138.
26.Zhang, G.P. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neuro computing. 50: 159-175.