تعیین روند رسوبگذاری در سامانه پخش سیلاب به روش پایش تغییرات تصاویر ماهواره‌ای

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه کشاورزی ومنابع طبیعی رامین خوزستان

2 عضو هیئت علمی دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

سابقه و هدف: یکی از انواع روشها برای تغذیه مصنوعی آب زیرزمینی، سامانه‌های پخش سیلاب می‌باشند. اما مهمترین مشکل آنها تجمع رسوبات در سطح بوده که به مرور زمان باعث کاهش اثربخشی سامانه می‌شوند.در این راستا، پایش تغییرات تصاویر ماهواره ای روش مناسبی برای شناخت دقیق نحوه گسترش رسوبگذاری در عرصه می‌باشد. از جمله مطالعات در این زمینه می توان به سررشته-داری) 2005 (اشاره کرد که با مقایسه دو تصویر طبقه‌بندی شده سالهای 1987 و 2001، نحوه گسترش رسوبگذاری در سطح عرصه و تغییرات آن را نشان داد (13). در پژوهش حاضر که در محدوده پخش سیلاب جارمه در شمال خوزستان انجام شده، وسعت رسوبگذاری و نحوه گسترش رسوبات در زمان‌های مختلف با پایش تغییرات تصاویر ماهواره‌ای تعیین گردید.
مواد و روشها: تغییرات در سه مقطع زمانی ابتدای احداث پخش سیلاب (1379)، میانه (1385) و شرایط فعلی (1392) پایش شدند. در اجرای یک مطالعه پایش تغییرات سه مرحله اصلی وجود دارد: 1- پیش پردازش داده‌ها شامل تصحیحات هندسی و رادیومتریک 2- انتخاب روش پایش تغییرات 3- ارزیابی دقت نتایج. در مرحله پیش ‌پردازش داده ‌ها تصحیح هندسی تصاویر به روش تصویر به تصویر انجام شد. همچنین از روش کاهش‌تیرگی پدیده جهت تصحیح رادیومتریک استفاده شده است. روش مقایسه پس از طبقه بندی به روش آمار پایش تغییر که قابلیت ایجاد یک جدول کامل از تغییرات و جزییات آن را دارد برای پایش تغییرات انتخاب شد. ارزیابی دقت نتایج با تعیین شاخص های دقت کلی، خطای حذف شده، خطای گماشته شده و ضریب کاپا که از ماتریس خطا بدست می‌آیند، انجام شد. برای طبقه‌بندی تصاویر از روش بیشینه احتمال استفاده شد همچنین به منظور انتخاب بهترین ترکیب رنگی برای تهیه نمونه-های تعلیمی از فاکتور شاخص بهینه استفاده شده است.
یافته‌ها: با توجه به ویژگی های منطقه مورد مطالعه، سه کلاس شامل اراضی رسوبگذاری، اراضی قلوه‌سنگی دستکاری شده و خاک دست‌نخورده در محدوده پخش سیلاب تعیین گردید و بر این اساس تصاویر طبقه‌بندی برای هر سال تهیه شدند. دقت کلی طبقه‌بندی برای تصاویر 1379، 1385 و 1392 به ترتیب 78، 85 و 83 درصد بوده است. نتایج بررسی کمّی تغییرات ایجاد شده و تعیین میزان جابجایی بین کلاس‌ها که با مقایسه پس از طبقه بندی به روش آمار پایش تغییر بدست آمد نشان می‌دهد که در فاصله زمانی بین 1379 تا 1385 مساحت اراضی رسوبگذاری 234 درصد افزایش یافته و از 5/8 به 5/27 هکتار رسیده است اما در مقطع زمانی 1385 تا 1392 بدلیل وقوع خشکسالی‌ها سیلاب زیادی در عرصه، پخش نشده و صرفاً ضخامت رسوبات در برخی مناطق بیشتر شده است و مساحت اراضی رسوبگذاری شده با اندکی افزایش به 5/29 هکتار رسیده است.
نتیجه گیری: نتایج مطالعه حاضر نشان داد که سطح اراضی رسوبگذاری شده در مقطع زمانی اول (یکسال پس از احداث تا میانه) توسعه زیادی پیدا کرده است. بارش‌های مناسب و سیلابهای فراوان از یکطرف و عاری بودن عرصه از رسوبات باعث شده است این تغییر به خوبی نمایان شود. اما در مقطع دوم (میانه تا زمان فعلی) سطح اراضی رسوبگذاری شده اندکی کمتر شده است. بطور منطقی چنین نتیجه‌ای دور از انتظار است اما بررسی شرایط نشان می‌دهد که خشکسالی‌های اخیر و عدم سیلگیری بویژه در قسمتهای میانی عرصه باعث قدیمی شدن سطح رسوبات در این مناطق شده است که این وضعیت باعث تغییر در خصوصیات بازتابی پدیده‌ها می‌شود. در این شرایط فرایند طبقه‌بندی قادر به تفکیک برخی از مناطق رسوبگذاری نبوده است و در اصل نه تنها کاهشی در سطح اراضی رسوبگذاری اتفاق نیفتاده است بلکه حتی رسوبگذاری در برخی مناطق ابتدای عرصه پخش سیلاب در دوره زمانی دوم اندکی توسعه یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Determining sedimentation trend on flood spreading system using satellite image change detection technique

نویسندگان [English]

  • Mohammad Moazami 1
  • Amin Zoratipour 2
1 Ramin agricultural and natural resources university of khouzestan
2 Scientific board member, Ramin agricultural and natural resources university of kouzestan
چکیده [English]

Background and objectives: Flood spreading system (FSS) is one of a variety of methods for artificial aquifer recharge. The system's main problem is sedimentation on the FSS area, which reduces its effectiveness for aquifer recharge. In this regard, satellite image change detection technique is a proper method for accurate sediment distribution pattern diagnosis with the FSS. A relevant study has been conducted by Sarreshtehdari (2005), where classified images of 1987 and 2001 were compared and revealed a sediment distribution pattern and variations. In the present study, which was conducted on Jarmeh FSS in the north of Khuzestan Province, sedimentation area and distribution pattern in several periods was determined by satellite image change detection technique.
Materials and methods: The changes were detected for three periods: 1999 (FSS construction year) to 2000, 2000 to 2006 and 2006 to 2013. Change detection follows three main steps: 1- Data pre-processing including geometry and radiometry corrections 2- Selection of change detection method 3- Results accuracy assessment. In the data pre-processing step, image to image method was used for geometry correction and Dark Object Subtraction method was used for radiometry correction. Post-Classification comparison algorithm, change detection statistics method was selected for the present study. The method is capable of preparing a complete change matrix with details. Some indices including overall accuracy, Omission, Commission and kappa coefficient extracted from error matrix, were used to assess the accuracy of results. Maximum likelihood algorithm was selected and used for image classification. Also, Optimum Index Factor (OIF) was used to improve image color composite selection, for the preparation of training samples.
Results: Based on the FSS area properties, three regions including sediments, disturbed and undisturbed terrains were separated on the FSS and the images were classified accordingly. Classification overall accuracy for 2000, 2006 and 2013 images was 78, 85 and 83%, respectively. The results of post-classification comparison algorithm by change detection statistics showed that, in the 2000 to 2006 period, sediment area increased from 8.5 to 27.5 ha. In 2006 to 2013, due to drought and the spread of flood on the FSS, the sediment area increased a little and reached 29.5 ha.
Conclusion: The results showed that, the sediment area was well extended in the first period. Proper amounts of precipitation and flooding on the one hand and no sediment initial surfaces on the other hand resulted in a good change detection. However, in the second period, the sediment area slightly decreased. Such a result is logically unexpected but drought in recent years and no flooding especially on the middle area of FSS, result in old sediment surfaces with different reflection properties. In this case, the classification algorithm was unable to enhance the entire sedimentation area. Hence, not only is there no reduction in sedimentation area, but the area slightly increased in the upper FSS for the second period.

کلیدواژه‌ها [English]

  • Sedimentation
  • flood spreading system
  • change detection
  • Landsat
  • Khuzestan
1.Arokhi, S., Niazi, Y., and Arzani, H. 2011. Comparison of land use/land cover change detection technique using GIS & RS (Case study: Darreshahr watershed, Elam province). Environmental Sciences. 8: 3. 81-96. (In Persian)
2.Banko, G. 1998. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory. International Institute for Applied Systems Analysis Austria, 36p.
3.Bindschadler, R.A., Scambos, T.A., Choi, H., and Haran, T.M. 2010. Ice sheet change detection by satellite image differencing. Remote Sensing of Environment. 114: 1353-1362.
4.Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 37: 35-46.
5.DeVries, J.J., and Simmers, I. 2002. Groundwater recharge: an overview of processes and challenges. Hydrogeol. J. 10: 5-17.
6.Grinand, C., Rakotomalala, F., Gond, V., Vaudry, R., Bernoux, M., and Vieilledent, G. 2013. Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sensing of Environment. 139: 68-80.
7.Liu, T., and Yang, X. 2015. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography. 56: 42-54.
8.Lu, D., Mausel, P., Brondizio, E., and Moran, E. 2004. Change detection techniques. Int. J. Rem. Sens. 25: 2365-2407.
9.Nejabat, M. 1999. Improving environmental characteristics in a wide area around of floodwater spreading system, a case study ninth international rain water cachment systems conference, Petrolina, Brazil.
10.Rokni, K., Ahmad, A., Solaimani, K., and Hazini, S. 2015. A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques. Inter. J. Appl. Earth Obs. Geoinf. 34: 226-234.
11.Safiyanian, A., and Madanian, M. 2011. Comparison of maximum likelihood and minimum distance methods for landuse map preparation. J. Agric. Natur. Resour. Sci. Technol.
15: 1. 253-264. (In Persian)
12.Sarreshtehdari, A. 2002. The Impact of a Flood Spreading Project on Soil Properties. ITC. University of Tewnte, Enschede, Netherlands.
13.Sarreshtehdari, A. 2005. Enhancement of sedimentation on flood spreading system using LANDSAT satellite images, TM & ETM+ sensors. Agricultural & Natural resources science and technology. 9: 4. 29-43. (In Persian)
14.Singh, A. 1989. Digital change detection techniques using remotely sensed data. Inter. J. Rem. Sens. 10: 989-1003.
15.Verbesselt, J., Zeileis, A., and Herold, M. 2012. Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment. 123: 98-108.
16.Wright, G.G., and Morrice, J.G. 1997. Landsat TM spectral information to enhance the landcover of Scotland. Int. J. Rem. Sens. 18: 3822-3834.