ارزیابی کارایی مولد کلیژن در تولید داده‌های اقلیمی به منظور استفاده در مدل WEPP (مطالعه موردی: ایستگاه زیدشت، استان البرز)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجو/ دانشگاه تهران

2 دانشیار/ دانشگاه تهران

چکیده

سابقه و هدف: مدل‌های هیدرولوژیک و محیط زیست ابزار مهمی برای مدیریت منابع طبیعی و محیط زیست هستند، این مدل‌ها به داده‌های ورودی مختلف (مثل تابش خورشیدی، سرعت باد، بیشینه و کمینه دما، بارش، محتوای آب خاک، جریان آبراهه و غلظت رسوب) با فواصل زمانی متفاوت (مثل روزانه، ساعتی) نیاز دارند. این داده‌ها در بسیاری مناطق محدود می‌باشند. بسیاری از ایستگاه‌های ارزیابی اقلیمی دوره‌های آماری کوتاهی دارند و اغلب با مشکل داده مفقود شده در سری زمانی روبه رو هستند. بنابراین اغلب مدل‌های هیدرولوژیک یا فرسایش به تولید داده اقلیمی ترکیبی به دست آمده از مشاهدات کوتاه مدت با استفاده از توزیع‌های آماری متفاوت نیاز دارند. مولدها به طور گسترده‌ای برای تولید سریهای هواشناسی ترکیبی طولانی با مشخصات آماری مطابق با داده های تاریخی که اکثراً کوتاه و حاوی داده مفقود شده هستند، استفاده می‌شوند. کلیژن (مولد اقلیمی) یک تولید کننده هواشناسی تصادفی است که 10 متغیر هواشناسی از قبیل بارش روزانه، مدت رگبار، شدت رگبار، تابش خورشیدی، دمای بیشینه و کمینه و سرعت و جهت باد را تولید می‌کنند. کلیژن در ابتدا برای تولید فایل اقلیمی مدل WEPP مورد استفاده قرار گرفت. هدف از این مطالعه ارزیابی کارایی کلیژن در ایستگاه زیدشت استان البرز می‌باشد.
مواد و روش‌ها: مقادیر پارامترهای ماهانه مورد نیاز کلیژن بر اساس دوره آماری 2013-2002 برای متغیرهای مربوط به بارش (مقدار بارش، احتمال روز مرطوب بعد از روز مرطوب و روز مرطوب بعد از روز خشک، حداکثر شدت نیم ساعته و زمان تا پیک بارش) و 2013-2007 برای متغیرهای دیگر (دمای بیشینه و کمینه، تابش خورشیدی، رطوبت نسبی، سرعت و جهت باد در 16 جهت) استخراج شده است. برای محاسبه متغیر زمان تا حداکثر شدت نیز از الگوش شدت 165 رگبار استفاده شده است. در نهایت برای مقایسه میانگین داده‌های مشاهداتی و مجموعه‌های چندگانه تولید شده توسط کلیژن از آزمون‌ آماری t استفاده شده است.
یافته‌ها: نتایج حاصل از اجرای آزمون t نشان داد که بین میانگین‌ گروه‌های مختلف متغیرهای بررسی شده (بارش کل سالانه، تعداد روز مرطوب سالانه، دمای کمینه و دمای بیشینه (اختلاف معنی داری وجود ندارد و کلیژن ابزار خوبی در این زمینه می‌باشد. علاوه بر این مولد کلیژن کارایی خوبی نیز برای تولید داده بارش کل ماهانه دارد.
نتیجه گیری: هرچند نتایج حاصل از این مطالعه نشان دهنده کارایی قابل قبول کلیژن می‌باشند، اما با توجه به اینکه این مطالعه اولین مطالعه از نوع خود در سطح کشور ایران می‌باشد و نیز طول دوره آماری مشاهداتی استفاده در این مطالعه تا حدی کوتاه بوده است، لذا تایید نهایی کارایی این تولید کننده به بررسی‌های بیشتر در ایستگاه‌های هواشناسی مختلف نیاز دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of efficiency of Cligen Generator for producing of climate data for using in WEPP model (case study: Zidasht station, Alborz Province)

نویسندگان [English]

  • shahrbanoo abbasi 1
  • Ali Akbar Nazari Samani 2
1
2
چکیده [English]

Background and objectives: Hydrological and environmental models have become important tools for natural resource and environmental management. However, these models require different input data (i.e., solar radiation, wind speed, maximum and minimum temperature, precipitation, soil water content, streamflow, and sediment concentration) at variable time intervals (e.g. daily, hourly) which are often limited. Many climate monitoring stations have very short periods of record and often carry missing data in the time series. Therefore, hydrological models often require generating synthetic climate data derived from short-term observations using different statistical distributions. The generators are widely used to produce long synthetic weather series with statistical characteristics corresponding to those of the historical records which tend to be relatively short or contain considerable amount of missing data. CLIGEN (CLImate GENerator) is a stochastic weather generator to simulate 10 meteorological variables, such as daily precipitation, storm duration, storm intensity, solar radiation, maximum and minimum daily temperature and wind velocity and direction. CLIGEN has primarily been used to provide climate input for WEPP model. The aim of this paper is to evaluate CLIGEN at Zidasht station in Alborz province of Iran.
Materials and methods: Monthly values of requirement variable of CLIGEN were collected for variable relate to precipitation (mean liquid precipitation, probability of a wet day following a wet day, probability of a wet day following a dry day, mean maximum daily 30 minute liquid precipitation intensity, time to peak rainfall intensity in 12 class ) from 2002-2013 and for other variable (max. and min, temperature, solar radiation, dew point temperature, wind velocity and direction in 16 direction) from 2007- 2013 at Zidasht station. For calculation of time to peak intensity has used pattern of intensity of 165 storm. Finally, statistical test of t were conducted to compare the differences between observed weather data and each of the sets of CLIGEN generated weather data.
Results: The results showed no significant difference in the mean between observed and generated values for considered variables including yearly total precipitation, yearly number of rainy days, maximum and minimum temperature and CLIGN preserves the means quite well. Also, the efficiency of CLIGEN is well for generating of the monthly total precipitation.
Conclusion: Although the results of this study indicate the acceptable performance, but considering that this is the first study of its kind in iran, and also period of observation was somewhat short in this study, final confirmation of CLIGEN needs to further evaluations in various weather stations.

کلیدواژه‌ها [English]

  • Weather generator
  • CLIGEN
  • Statistical test
  • Time to peak of precipitation
  • Zidasht

1.Al-Mukhtar, M., Dunger, V., and Merkel, B. 2014. Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area, Germany. Hydrology Research. 45: 4-5. 615-630.

2.Arnold, J.G., and Williams, J.R. 1989. Stochastic generation of internal storm structure. Trans. ASAE. 32: 1. 161-166.
3.Arnold, J.G., Williams, J.R., Nicks, A.D., and Sammons, N.D. 1990. SWRRB, A Basin Scale Simulation Model for Soil and Water Resources Management. TexasA&MUniversity Press, 236p.
4.Baffault, C., Nearing, M.A., and Nicks, A.D. 1996. Impact of CLIGEN parameters on WEPP predicted average annual soil loss. Transactions of the ASAE. 39: 2. 447-457.

5.Caviglione, J.H., Fonseca, I.C.D.E., and Filho, J.T. 2013. Viability of CLIGEN in the climatic conditions of Paraná state, Brazil. Rev. bras. eng. agríc. ambient. 17: 6. Campina Grande June 2013.

6.Chen, J., and Brissette, F.P. 2014. Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China. Inter. J. Climatol. 34: 10. 3089-3105.

7.Chen, J., Brissette, F.P., and Leconte, R. 2010. A daily stochastic weather generator for preserving low-frequency of climate variability. J. Hydrol. 388: 480-490.
8.Elliot, W.J., and Arnold, C.D. 2001. Validation of the weather generator CLIGEN with precipitation data from Uganda. Trans ASAE. 44: 1. 53-58.
9.Fan, J.Ch., Yang, Ch.H., Liu, Ch.H., and Huang, H.Y. 2013. Assessment and validation of CLIGEN-simulated rainfall data for Northern Taiwan. Paddy Water Environ. 11: 161-173.
10.Hanson, C.L., Cumming, K.A., Woolhiser, D.A., and Richardson, C.W. 1994. Microcomputer Program for Daily Weather Simulations in the Contiguous United States. USDA_ARS Publ. ARS_114, Washington, DC.
11.Headrick, M.G., and Wilson, B.N. 1997. An evaluation of stochastic weather parameters for Minnesota and their impact on WEPP. ASAE Paper No. 972230. St. Joseph, Mich.: ASAE.
12.Hoogenboom, G. 2000. Contribution of agro-meteorology to the simulation of crop production and its applications. Agric. For. Meteorol. 103: 137-157.
13.Johnson, G.L., Hanson, C.L., Hardegree, S.P., and Ballard, E.B. 1996. Stochastic
weather simulation: Overview and analysis of two commonly used models. J. Appl. Meteorol. 35: 1. 1878-1896.
14.Kevin, M., Ramesh, R., John, O., Imran, A., and Bahram, G. 2005. Evaluation of weather generator ClimGen for southern Ontario. Can. Water Resour. J. 30: 4. 315-330.
15.Kou, X., Ge, J., Wang, Y., and Zhang, C. 2007. Validation of the weather generator CLIGEN with daily precipitation data from the Loess Palteau, China. J. Hydrol. 347: 347-357.
16.Min, Y.M., Kryjov, V.N., An, K.H., Hameed, S.N., Sohn, S.J., Lee, W.J., and Oh, J.H. 2011. Evaluation of the weather generator CLIGEN with daily precipitation characteristics in Korea. Asia-Pacific J. Atmos. Sci. 47: 3. 255-263.
17.Minville, M., Brissette, F., and Leconte, R. 2008. Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J. Hydrol. 358: 70-83.
18.Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol. 10: 3. 282-290.
19.Nicks, A.D., and Gander, G.A. 1994. CLIGEN: a weather generator for climate inputs to water resources and other models, P 903-909. In: D.G. Watson, F.S. Zazueta and T.V. Harrison (Eds.), Proceedings of fifth International Conference on Computer in Agriculture. ASAE, St. Joseph, MI.
20.Nicks, A.D., Lane, L.J., and Gander, G.A. 1995. Chapter 2. Weather Generator, P2.1-2.22 In: D.C. Flanagan and M.A. Nearing (Eds.), Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN.
21.Richardson, C.W. 1981. Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resources Research. 17: 182-190.
22.Richardson, C.W., and Wright, D.A. 1984. WGEN: A model for generating daily weather variables. US Dept. Agric., Agricultural Research Service. Publ. ARS-8.
23.Semenov, M.A., and Barrow, E.M. 2002. LARS-WG, A Stochastic Weather Generator for Use in Climate Impact Studies, User Manual.
24.Stockle, C.O., Campbell, G.S., and Nelson, R. 1999. ClimGen Manual. Biological Systems Engineering Department, Washington State University, Pullman, WA.
25.Vaghefi, P., and Yu, B. 2016. Use of CLEGEN to simulated decreasing precipitation trends in the Southwest of Western Australia. Transactions of the ASABE. 59: 1. 49-61.
26.Yu, B. 2000. Improvement and evaluation of CLIGEN for storm generation. Trans. ASAE. 43: 2. 301-307.
27.Yu, B. 2005. Adjustment of CLIGEN parameters to generate precipitation change scenarios in southeastern Australia. Catena. 61: 196-209.
28.Zhang, X.C. 2005. Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology.
135: 215-229.
29.Zhang, X.C., and Garbrecht, J.D. 2003. Evaluation of CLIGEN precipitation parameters and their implication on WEPP runoff and erosion prediction. Trans. ASAE. 46: 311-320.
30.Zhang, X.C., and Liu, W.Z. 2005. Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China. Agricultural and Forest Meteorology. 131: 127-142.
31.Zhang, Y., Liu, B., Wang, Z., and Zhu, Q. 2008 Evaluation of CLIGEN for storm generation on the semiarid Loess Plateau in China. Catena. 73: 1. 1-9.