کاهش عدم قطعیت در یک مدل نیمه توزیعی هیدرولوژیکی با روش GLUE

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش اموخته کارشناسی ارشد آبخیزداری

2 دانشگاه گنبد

3 دانشجوی دکتری آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی

4 استادیار- دانشگاه گنبد

چکیده

سابقه و هدف: واسنجی مدل‌های نیمه‌توزیعی- فیزیکی هیدرولوژیکی به دلیل عدم قطعیت در پارامترهای زیاد مدل و عدم توانایی در اندازه‌گیری توزیعی خصوصیات فیزیکی در سطح حوضه آبخیز، منجر به افزایش عدم قطعیت در بهینه‌سازی پارامترها می‌شود. لذا، به-منظور کاربرد موفقیت‌آمیز مدل‌های هیدرولوژیکی در تحقیقات کاربردی منابع آب، واسنجی دقیق و تجزیه و تحلیل عدم قطعیت پیش‌بینی ضروری است (40 و 43). شن و همکاران (2012) در تحلیل پارامترهای عدم قطعیت در مدل‌سازی هیدرولوژیکی و رسوب با مدل SWAT در منطقه‌ای از چین به این نتیجه رسیدند که فقط تعداد محدودی پارامتر بر خروجی مدل اثر قابل توجهی دارند (34). شاپ و همکاران (2014) در شبیه‌سازی وقایع تک رخداد و طولانی مدت دوره بارش مانسون با استفاده از مدل SWAT بر رواناب نتیجه گرفتند که در نواحی مرتفع و شیب‌دار آب پایه غالب است، در صورتی‌که در نواحی با ارتفاع کم‌تر، رواناب سطحی مؤثرتر است (35). در این مقاله، با استفاده از روش عدم قطعیت درست‌نمایی تعمیم یافته ( GLUE) در مدل SWAT ، کمیت ورودی و خروجی جریان ماهانه در حوضه شرقی رودخانه گرگانرود به مساحت 7072 کیلومترمربع برآورد شد.
مواد و روش‌ها: ایستگاه هیدرومتری قزاقلی یکی از ایستگاه‌های آب منطقه‌ای گلستان جهت شبیه‌سازی رواناب ماهانه انتخاب شد. بارش سالیانه از غرب به شرق، از 800 میلی‌متر به 200 میلی‌متر، و جنوب به شمال کاهش می‌یابد. در این تحقیق اجرای مدل در مقیاس زمانی ماهانه و از سال 1983 تا 1993 انجام شد. به‌ طوری که سال آبی 1984 تا 1990 به عنوان دوره واسنجی و سال آبی 1991 تا 1993 برای دوره اعتبار سنجی انتخاب گردید.
یافته‌ها: در مدل‌های توزیعی و نیمه توزیعی مانند SWAT، جهت به‌دست آوردن خروجی بهتر، شناسایی پارامترهای حساس، قبل از واسنجی ضروری است. براساس این مطالعه پارامترهایی مانند CN2 (شماره منحنی)، GWQMN (حداقل عمق مورد نیاز سطح ایستایی در سفره‌های کم عمق)، RCHRG_ DP (درصد تغذیه سفره عمیق از سفره کم عمق)، ALPHA_ BNK (پارامتر α در جریان پایه)، ESCO (فاکتور جبران کننده تبخیر از خاک) وSOL_ K (هدایت هیدرولیکی اشباع لایه‌های خاک) به‌عنوان حساس‌ترین پارامترها تعیین شدند. با توجه به نتایج این مطالعه، پارامتر CN2، مؤثرترین پارامتر در دبی خروجی از منطقه مورد مطالعه می‌باشد و شماره منحنی به عنوان منبع اصلی عدم قطعیت در نتایج مشخص شد. نتایج این مطالعه با استفاده از شاخص‌های آماری ضریب تعیین و ضریب ناش – ساتکلیف در خروجی ایستگاه هیدرومتری قزاقلی برای دوره واسنجی به‌ترتیب 80/0 و 72/0 و برای دوره اعتبارسنجی به ترتیب 83/0و 73/0 می باشد. از طرف دیگر روش GLUE به خوبی توانسته رواناب را در طول دوره مورد مطالعه واسنجی کند، به طوری‌ که بین 69 تا 74 درصد از داده‌های مشاهداتی به‌ترتیب در دوره واسنجی و صحت سنجی در محدوده‌ی اطمینان 95 درصد قرار گرفتند.
نتیجه‌گیری: نتایج آنالیز عدم قطعیت بیانگر عدم قطعیت زیاد مدل در دوره واسنجی بود اگر چه نتایج شبیه‌سازی رواناب قابل قبول بود و 69 درصد داده‌های مشاهداتی در محدوده‌ی اطمینان 95 درصد قرار گرفتند. نتایج کلی نشان داد مدلSWAT در تحقیق حاضر، عملکرد قابل قبولی برای برآورد رواناب داشته و می‌توان از آن برای ارزیابی هیدرولوژیکی حوزه گرگانرود استفاده کرد. این مطالعه اطلاعات مفیدی برای مدل‌سازی هیدرلوژیکی مربوط به سیاست‌گذاری‌های توسعه‌ای در حوزه رودخانه گرگانرود و مناطق مشابه ارایه می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Reducing uncertainty in a semi distributed hydrological modeling within the GLUE framework

چکیده [English]

Background and objectives: The calibration of hydrologic models is a worldwide challenge due to the uncertainty involved in the large number of parameters and the inability to reliably measure the distributed physical characteristics of a catchment results in significant uncertainty in the parameterization of physically based, semi-distributed models. The difficulty even increases in a region with high seasonal variation of precipitation. Therefore, a successful application of a hydrologic model in applied water research strongly depends on calibration and uncertainty analysis of model output (). Shen and et al. () quantify the parameter uncertainty of the stream flow and sediment simulation by SWAT model in the part of China. The research indicated that only a few parameters affected the final simulation output significantly. Shape and et al. () assessed the capability of the Soil and Water Assessment Tool (SWAT) model to capture event-based and long-term monsoonal rainfall–runoff processes in complex mountainous terrain and found that high elevation steep sloping regions were generally base flow dominated while lower elevation locations were predominately influenced by surface runoff. In this paper, the Generalized Likelihood Uncertainty Estimation (GLUE) method was combined with the Soil and Water Assessment Tool (SWAT) to quantify the monthly stream flow in the eastern Gorganrood river basin.
Materials and methods: The Golestan Regional Water Company (GRWC) monitoring site at Gazaghly was chosen as the outlet for the entire watershed since it is the lowest monitoring station on the river not subject to dam influence. Annual precipitation decreases in the west to east direction, low (200 mm) to high (880 mm) and from south to north direction. Model has been calibrated and validated using monthly runoff flow data of ten years 1984 and 1993. Data pertaining to year 1984-1990 has been used for calibration and 1991-1993 for validation.
Results: In semi-distributed models such as SWAT, it is necessary to identify the most sensitive parameters to obtain a better understanding of the overall hydrologic processes before calibration. Based on this study, only a few parameters affected the final simulation output significantly. The parameters such as CN2 (curve number), GWQMN (threshold in the shallow aquifer), RCHRG_ DP (deep aquifer percolation fraction), ALPHA_ BNK (base flow alpha factor for bank storage), ESCO (soil evaporation compensation factor) and SOL_ K were found to be the most sensitive parameters. According to results, the parameter CN2, was the most effective parameter on the output discharge of the studied area and CN2, was identified as a main source of uncertainty in results. Statistical model performance measures, coefficient of determination (R2) of 0.80, the Nash-Sutcliffe simulation efficiency (ENS) of 0.72, for calibration and 0.83, and 0.80, respectively for validation, indicated good performance for runoff estimating on monthly time step in the outlets of the Gazaghly gauging station. 69–74% of the observed runoff data fall inside the 95% simulation confidence intervals in the calibration and validation periods. The evaluation statistics for the daily runoff simulation showed that the model results were acceptable, but the model underestimated the runoff for high-flow events.
Conclusion: SWAT was applied to simulate monthly runoff in part of the Gorganrood river basin. Results of uncertainty analysis indicated that SWAT model had large uncertainties for calibration period, although the simulation of monthly runoff for the Gazaghly station was satisfactory during the calibration period and in the model calibration stage 69 of runoff observations were within the corresponding 95% confidence interval. This study would provide useful information for hydrology modeling related to policy development in the Gorganrood river basin and other similar areas.

کلیدواژه‌ها [English]

  • GLUE
  • Sensitivity analysis
  • Uncertainty
  • SWAT
  • Gorganrood
1.Abbaspour, K.C. 2007. User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Eawag, Swiss Fed. Institute of Aquatic Science and Technology Dubendorf, Switzerland.
2.Abbaspour, K.C., Faramarzi, M., Seyed Ghasemi, S., and Yang, Y. 2009. Assessing the impact of climate change on water resources in Iran. J. Water Resour. Res. 45: 1-16.
3.Akhavan, S., Abedi-Koupai, J., and Mousavi, S.F. 2010. Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems and Environment. 139: 675-688.
4.Arabi, M., Govindaraju, R.S., and Hantush, M.M. 2007. A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. J. Hydrol. 333: 459-471.
5.Arefi Asl, A., Najafine Zad, A., Kiyani, F., and Salman Mahini, A. 2013. Watershed runoff and sediment simulation using the SWAT model in Golestan Province Chehelchay. J. Range Water. 3: 433-446. (In Persian)
6.Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. 1998. Large area hydrologic modeling and assessment – Part 1: Model development. J. Amer. Water Resour. Assoc.34: 73-89.
7.Bates, B.C., and Campbell, E.P. 2001. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall–runoff modeling. Water Resources Research. 37: 937-947.
8.Beven, K.J. 2001. Rainfall-Runoff Modelling-The Primer. John Wiley, Hoboken, NJ, 360p.
9.Beven, K.J., and Binley, A.M. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes. 6: 279-298.
10.Blasone, R.S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A., and Zyvoloski, G.A. 2008. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advance in Water Resource. 31: 648-630.
11.Burba, G.G., and Verma, S.B. 2005. Seasonal and interannual variability in evapotranspiration of native tall grass prairie and cultivated wheat ecosystems, Agriculture. Forest Meteorological. 135: 190-201.
12.Chow, V.T., Maidment, D.R., and Mays, L.W. 1988. Applied hydrology, International Ed., McGraw-Hill, New York.
13.Dowlatabadi, S., and Zomorodian, M. 2013. Hydrological Simulation of Firoozabad Basin by SWAT. J. Irrig. Water Engin. 14: 38-48. (In Persian)
 14.Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., and Hotchkiss, R.H. 2002. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 262: 1-4. 209-223.
15.Freer, J., Beven, K.J., and Ambroise, B. 1996. Bayesian estimation of uncertainty in runoffprediction and the value of data: an application of the GLUE approach. Water Resources Research. 32: 2161-2173.
16.Gassman, P.W., Sadeghi, A.M., and Srinivasan, R. 2014. Applications of the SWAT model special section: overview and insights. J. Environ. Qual. 43: 1-8.
17.Gassman, P.W., Reyes, M.R., Green, C.H., and Arnold, J.G. 2007. The Soil and Water Assessment Tool. Historical Development, Applications, and Future Research Directions. Trans. ASABE. 50: 4. 1211-1250.
18.Geza, M., and McCray, J.E. 2008. Effects of soil data resolution on SWAT model stream flow and water quality predictions. J. Environ. Manage. 88: 393-406.
19.Gupta, H.V., Sorooshian, S., and Yapo, P.O. 1998. Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resources Research. 34: 751-763.
20.Hantush, M.M., and Kalin, L. 2005. Uncertainty and sensitivity analysis of runoff and sediment yield in a small agricultural watershed with KINEROS2. Hydrol. Sci. J. 50: 6. 1151-1172.
21.Jin, X., Xu, C.Y., Zhang, Q., and Singh, V.P. 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Hydrol. J. 383: 147-155.
22.Kabir, A., and Bahremand, A.R. 2013. Study uncertainty of parameters of rainfall-runoff model (WetSpa) by Mont Carlo method. J. Water Soil Cons. 20: 5. 81-97. (In Persian)
23.Kannan, N., White, S.M., Worrall, F., and Whelan, M.J. 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for Hydrological modeling in SWAT-2000. J. Hydrol. 332: 456-466.
24.Kavian, A., Golshan, M., Rouhani, H., and Ouri, S. 2014. Assessment of Physiographic Characteristics Effect on SWAT Model Performance: A Case Study of Haraz Catchment. International Bulletin of Water Resources and Development. 1: 3. 184-193. (In Persian)
25.Lidén, R., and Harlin, J. 2000. Analysis of conceptual rainfall-runoff modelling performance in different climates. J. Hydrol. 238: 231-240.
26.Liu, Y., and Gupta, H. 2007. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resources Research. 43: 1-18.
27.Mantovan, P., and Todini, E. 2006. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. J. Hydrol. 330: 368-381.
28.Moussa, R. 2008. Significance of the Nash-Sutcliffe efficiency measure for linear rise and exponential recession in event based flood modeling. Geophysical Research. EGU-A-08369. 10-2.
29.Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. 2005. Soil and Water Assessment Tool–Theoretical Documentation. Texas, USA, 661p.
30.Osmani, H., Motamed Vaziri, B., and Moini, A. 2013. Discharge simulation, calibration and validation of model SWAT, Tehran Latyan Dam area. J. Engin. Water. Manage. 2: 134-143. (In Persian)
31.Salmani, H., Mohseni Saravi, M., Rouhani, H., and Salaegheh, A. 2013. SWAT model to simulate the performance evaluation and ParaSol program (Qazaqli Watershed, Golestan). Iran Watershed Science and Engineering. 22: 1-14. (In Persian)
32.Sanadhya, P., Gironas, J., and Arabi, M. 2014. Global sensitivity analysis of hydrologic processes in major snow-dominated mountainous river basins in Colorado. Hydrology Process. 28: 9. 3404-3418.
 33.Sellami, H., Jeunesse, L.A., Benabdallah, S., Baghdadi, N., and Vanclooster, V. 2014. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrology Earth System Science. 18: 2393-2413.
34.Shen, Z.Y., Chen, L., and Chen, T. 2012. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology Earth System Science. 16: 121-132.
35.Shope, C.L., Maharjan, G.R., Tenhunen, J., Seo, B., Kim, K., Riley, J., Arnold, S., Koellner, T., Ok, Y.S., Peiffer, S., Kim, B., Park, J.H., and Huwe, B. 2014. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrology Earth System Science. 18: 539-557.
36.Singh, V., Bankar, N., lunkhe, S.S., Bera, A.K., and Sharma, J.R. 2013. Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Current Science. 104: 9. 1187-1199.
37.Sloan, P.G., Morre, I.D., Coltharp, G.B., and Eigel, J.D. 1983. Modeling subsurface stromflow on steeply sloping forested watersheds. Water Resources Research. 20: 12. 1815-1822.
38.Smith, P.K., and Daren Harmel, R.D. 2007. Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. Hydrol. J. 337: 326-336.
39.Spruill, C.A., Workman, S.R., and Taraba, J.L. 2000. Simulation of daily and monthly stream discharge from small watershed using the SWAT model. Soil and Water Division of ASAE. 98: 05-109. 1431-1440.
40.Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and Srinivasan, R. 2008. Global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 324: 10-23.
41.Van Griensven, A., Ndomba, P., Yalew, S., and Kilonzo, F. 2012. Critical review of SWAT applications in the upper Nile basin countries. J. Hydrol. Earth Syst. Sci. 16: 3371-3381.
42.Viola, F., Noto, L.V., Cannarozzo, M., and La Loggia, G. 2009. Daily streamflow prediction with uncertainty in ephemeral catchments using the GLUE methodology. Physics and Chemistry of the Earth, Parts A/B/C. 34: 701-706.
43.Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. 2003. A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research. 39: 8. 1-14.
44.Williams, J.R. 1969. Flood routing with variable travel time or variable storage coefficients. Transactions of the ASAE. 12: 1. 100-103.