تحلیل حساسیت مدل اکوکراپ تحت تنش‌های شوری و آبی درآبیاری قطره‌ای تیپ در گیاه گینوا

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

2 نویسنده مسئول، دانشیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

3 دانشیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

4 استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، اهواز، ایران

چکیده

سابقه و هدف: امروزه مدل‌های گیاهی ابزار مناسبی برای شبیه‌سازی پارامترهای مهم کشاورزی به‌شمار می‌روند. ﻣﺪلﻫﺎیﺷﺒﯿﻪﺳﺎز عملکرد گیاهان در دهه اﺧﯿﺮ ﺑﻪﻋﻨﻮان یک اﺑﺰار ﻣﺪﯾﺮﯾﺖآب در ﻣﺰرﻋﻪ و ﺑﻬﯿﻨﻪﺳﺎزیﺑﻬﺮه‌وری آب اﻫﻤﯿـﺖ زﯾﺎدی پیدا کرده اﺳﺖ. با توجه به وجود تنش‌های محیطی در هر منطقه، مدل‌های گیاهی باید ارزیابی شده و مورد بررسی قرار گیرند. مدل اکوکراپ یکی از مدل‌های گیاهی است که توسط سازمان خواروبار کشاورزی برای شبیه‌سازی عملکرد گیاهان زراعی تحت شرایط مختلف محیطی ارائه شده است. تحلیل حساسیت به عنوان مرحله‌ی اساسی پیش از ارزیابی مدل AquaCrop به شمار می‌رود که اثر زیادی در بهبود سرعت و دقت مراحل واسنجی و صحت‌سنجی دارد. لذا، یافتن پارامترهای حساس و غیرحساس در این مرحله برای گیاهان زراعی موجود در دیتابیس AquaCrop از اهمیت زیادی برخوردار است.
مواد و روش‌ها: پژوهش حاضر با هدف تحلیل حساسیت این مدل گیاهی در یک مزرعه تحقیقاتی واقع در شهرستان باغملک، در شرق استان خوزستان، در طول جغرافیایی ۴۹ درجه و 51 دقیقه شرقی و عرض جغرافیایی ۳۱ درجه و 41 دقیقه‌ی شمالی در سال زراعی 1402-1401 انجام شد. در این پژوهش، گیاه کینوا تحت آبیاری قطره‌ای و به صورت پالسی کشت گردید. تیمارهای مورد پژوهش شامل مقدار آب آبیاری (I1: 60، I2: 80 و I3: 100 درصد نیاز آبی) و شوری آب (F: 5/0 و S: 6 دسی‌زیمنس بر متر) بود. در ادامه میزان حساسیت این مدل گیاهی نسبت به تغییرات پارامترهای رشد گیاهی شامل بهره‌وری آب نرمال شده (WP*)، حداکثر ضریب تعرق گیاهی (KCTrx)، پوشش گیاهی اولیه (CC0)، ضریب رشد پوشش گیاهی (CGC)، ضریب کاهش پوشش گیاهی (CDC) و شاخص برداشت (HI) به روشBeven (1979) ارزیابی شد.
یافته‌ها: نتایج نشان داد که مدل AquaCrop بیشترین حساسیت را نسبت به تغییرات پارامتر بهره‌وری آب نرمال شده (با متوسط ضریب حساسیت 82/0) داشت. پس از آن، بیشترین حساسیت نسبت به پارامترهای حداکثر ضریب تعرق گیاهی، شاخص برداشت و ضریب رشد پوشش گیاهی به ترتیب با متوسط ضرایب حساسیت 72/0، 68/0 و 38/0 به دست آمد. کمترین حساسیت نیز نسبت به دو پارامتر پوشش گیاهی اولیه و ضریب کاهش پوشش گیاهی به ترتیب با متوسط ضریب حساسیت 02/0 و 05/0 تعیین شد. تغییرات زیست‌توده کینوا نسبت به مقادیر ضریب کاهش پوشش گیاهی معکوس و نسبت به مقادیر سایر پارامترهای گیاهی مستقیم بود.
نتیجه‌گیری: افزایش تنش شوری و آبی سبب افزایش حساسیت نتایج شبیه‌سازی مدل AquaCrop نسبت به تغییرات بهره‌وری آب نرمال شده، ضریب تعرق گیاهی، شاخص برداشت و ضریب رشد پوشش گیاهی گردید. بنابراین پیشنهاد می‌شود در مرحله‌ی واسنجی تنها این چهار پارامتر گیاهی مورد ارزیابی قرار گیرند و اگر تیمارهای تنش آبی و شوری وجود دارد؛ واسنجی پارامترها تحت این شرایط نیز انجام گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity analysis of the AquaCrop model under salinity and water stress in tape drip irrigation in quinoa plant

نویسندگان [English]

  • Jalal Gharibvan notorki 1
  • Halimeh Piri 2
  • Parviz Haghighat jou 3
  • Amir Naserin 4
1 Ph.D. Student of Water Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran
2 Corresponding Author, Associate Prof., Dept. of Water Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran
3 Associate Prof., Dept. of Water Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran.
4 Assistant Prof., Dept. of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
چکیده [English]

Background and purpose: Today, plant models are a suitable tool for simulating important agricultural parameters. Simulation models of plant performance have gained great importance in the last decade as a tool for water management in the farm and optimization of water productivity. Considering the existence of environmental stresses in each region, plant models should be evaluated and investigated. The AquaCrop model is one of the plant models presented by the Agricultural Food Organization to simulate the performance of crops under different environmental conditions.
Sensitivity analysis is considered as the basic step before evaluating the AquaCrop model, which has a great effect on improving the speed and accuracy of the calibration and validation stages. Therefore, it is very important to find sensitive and non-sensitive parameters at this stage for the crops available in the AquaCrop database.
Materials and methods: The present study was conducted with the aim of analyzing the sensitivity of this plant model in a research farm located in Baghmelk city, in the east of Khuzestan province, at the longitude of 49 degrees and 51 minutes east and latitude of 31 degrees and 41 minutes north in the crop year of 1402-1401. In this research, the quinoa plant was grown under drip irrigation and pulsed. In this research, the quinoa plant was grown under drip irrigation and pulsed.The researched treatments included the amount of irrigation water (I1: 60, I2: 80 and I3: 100 percent of field capacity) and water salinity (F: 0.5 and S: 6 dS.m-1). Next, the sensitivity of this plant model to changes in plant growth parameters including normalized water productivity (WP*), maximum plant transpiration coefficient (KCTrx), primary vegetation cover (CC0), vegetation growth coefficient (CGC), vegetation reduction coefficient (CDC) and harvest index (HI) were evaluated by Beven (1979) method.
Findings:The results showed that the AquaCrop was the most sensitive to changes in the WP* (with an average sensitivity coefficient of 0.82). Then, the highest sensitivity to KCTrx, HI and CGC was obtained with average sensitivity coefficients of 0.72, 0.68 and 0.38, respectively. The lowest sensitivity was determined with average sensitivity coefficients of 0.02 and 0.05, respectively, with respect to CCo and CDC parameters. Changes in quinoa biomass were inverse to the CDC values and direct to the values of other crop parameters. The increase in salinity and water stress increased the sensitivity of the AquaCrop results to changes in WP*, KCTrx, HI and CGC.
Conclusion:As a result, it is suggested to evaluate only these four crop parameters in the calibration stage and if there are water and salinity stress; calibration of parameters should also be done under these conditions.

کلیدواژه‌ها [English]

  • Normalized Water Productivity
  • Beven Method
  • Crop Modeling
1.Nasrolahi, Al. H., Ahmadee, M., & Rustum, R. (2024). Sensitivity Analysis of AquaCrop Model for Winter Wheat in Different Water Supply Conditions, Journal of Irrigation and Drainage Engineering, 150 (2), doi: https://doi. org/10.1061/JIDEDH.IRENG-10099.
2.Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426-437.
3.Ahmadi, M., Ghanbarpouri, M., & Eghderanjad, A. (2021). The amount of water used in wheat using sensitivity analysis and evaluating the AquaCrop model. Water management in agriculture. 8(1), 15-30. [In Persian]
4.Ansari, M. A., Eghderanjad, A., & Ebrahimi Pak, N. A. (2018). Simulation of potato yield (Solanum tuberosum L.) under irrigation conditions using two models, AquaCrop and Cropsyst. Journal of Crop Ecophysiology, 13(2), 287-304. [In Persian]
5.Ebrahimipak, N. A., Eghderanjad, A., Tafte, A., & Ahmadi, M. (2018). Evaluation of AquaCrop, WOFOST and CropSyst models in the simulation of rapeseed yield in Qazvin region. Iran Irrigation and Drainage Journal, 13(3), 715-726. [In Persian]
6.Li, F., Yu, D., & Zhao, Y. (2019). Irrigation scheduling optimization for cotton based on the AquaCrop model. Water Resource Management, 33 (1), 39-55.
7.Masasi, B., Taghvaeian, S., Gowda, P. H., Marek, G., & Boman, R. (2020). Validation and application of AquaCrop for irrigated cotton in the Sothern Great Plains of US. Irrigation Science, 38, 593-607.
8.Rahimi Khob, H., Sohrabi, T., & Delshad, M. (2019). Sensitivity analysis of basil plant growth parameters in AquaCrop model under different nitrogen fertilizer stresses. Iranian Journal of Water and Soil Research, 51(6), 1341-1351.
[In Persian]
9.Salemi, H. R., Mohd Soom, M. A., Lee, T. S., Mousavi, S. F., Ganji, A., & Yusoff, M. K. (2011). Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research, 610(10), 2204-2215.
10.Guo, D., Zhao, R., Xing, X., & Ma, X. (2019). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 1-19.
11.Jin, X., Li, Z., Nie, C., Xu, X., Feng, H., Guo, W., & Wang, J. (2018). Parameter sensitivity analysis of the AquaCrop model based on extended fourier amplitude sensitivity under different agro-meteorological conditions and application. Field Crops Research, 226, 1-15.
12.Ebrahimi Pak, N. A., Ahmadi, M., Eghderanjad, A., & Khashai Seyuki, A. (2017). Evaluation of AquaCrop model in simulating saffron performance under different scenarios of low irrigation and zeolite consumption. Journal of Water and Soil Resources Protection, 8(1), 117-132. [In Persian]
13.Adabi, V., Azizian, A., Ramezani, A., Kaviani, A., & Ababai, B. (2018). Local sensitivity analysis of AquaCrop model for two crops wheat and corn in Qazvin Plain and Parsabad, Moghan. Iranian Journal of Irrigation and Drainage, 13(6), 1579-1565. [In Persian]
14.Pajohideh, S. K., Eghderanjad, A., & Abbasi, F. (2023). Sensitivity analysis of corn plant growth parameters in the AquaCrop model under the interaction of water stress and nitrogen fertilizer. Water Management in Agriculture, 10(1), 190-175. [In Persian]
15.Jamali, S., & Ansari, H. (2021). Irrigation planning of quinoa plant under different irrigation levels using plant water stress index. Irrigation and drainage of Iran. 15 (6), 1274-1263. [In Persian]
16.Tafteh, A., & Emdad, M. R. (2021). Determining the sensitivity coefficients of crop yield to water (Ky) in
low-irrigation managements at different stages of quinoa plant growth. Water management in agriculture. 8 (2), 116-101. [In Persian]
17.Beven, K. (1979). A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44(3-4), 169-190.
18.Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 645-654.
19.Karimi Organi, H., Rahimi Khob, A., & Nazarifar, M. H. (2016). Validation and verification of aquacrop model for atmosphere in Pakdasht region. Iranian Journal of Water and Soil Research, 47(3), 539-549. [In Persian]
20.Hajizadeh, M., Rahimi Khoob, A., Ali Niyaifard, S., & Delshad, M. (2018). Determining the normalized water productivity and investigating the sensitivity of the EcoCrop model for radish. Iranian Journal of Irrigation and Drainage, 13(5), 1527-1537. [In Persian]