پایش سری زمانی تغییرات سطح آب مخزن سد با استفاده از رهیافت‌های سنجش از دور

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، استاد گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سابقه و هدف
مخازن سدها از مهم‌ترین منابع تامین آب محسوب می‌شوند که تخمین مساحت پهنه آب آن‌ها در بسیاری از مباحث هیدرولیکی و هیدرودینامیکی ضروری است. روندیابی و مدیریت سیلاب، شبیه‌سازی پخش و انتقال مواد آلاینده، و نیز مدل‌سازی لایه‌بندی حرارتی مخزن سد‌ از مباحث مهمی هستند که نیازمند اطلاع از مساحت پهنه آبی می‌باشند. با توجه به توسعه ‌علم سنجش از دور و بهبود روز‌افزون کیفیت تصویربرداری ماهواره‌های مختلف می‌توان با کمترین هزینه اطلاعات ارزشمندی از روند تغییرات مساحت پهنه‌های آبی بدست آورد و آن‌ها را در سری‌های زمانی بلند مدت ارزیابی کرد. در این پژوهش یک روش دقیق بر مبنای سنجش از دور با هدف محاسبه سطح آب مخازن سدها و دریاچه‌ها در تراز سطح آب دلخواه ارائه شده است.
مواد و روش‌ها
تصاویر ماهانه ماهواره Landsat-8 از آوریل 2013 تا سپتامبر 2023 برای مخزن سد زوجار در کشور اسپانیا واقع در طول جغرافیایی W2318°/5- و عرض جغرافیایی °N9295/38 از آرشیو سایت سازمان زمین شناسی ایالات متحده (USGS) دانلود شد و پس از انجام تصحیحات رادیومتریکی تصاویر، با استفاده از ترکیب پنج شاخص آبی MNDWI، NWI ،AWEIsh ،AWEInsh وTCwet یک آستانه تشخیص بین مناطق آب و خشکی برای هر تصویر ماهانه که شامل شکاف داده‌ها (ابهام در وضعیت آب یا خشک بودن پیکسل) به دلیل وجود سایه، ابر، حفره، یخ و غیره بود بدست آمد تا مشخص کند وضعیت پیکسل‌ها آب، خشکی یا شکاف می‌باشد. با استفاده از آستانه تشخیص بدست آمده تصاویر ماهانه به صورت پهنه‌های آب-خشکی که شامل شکاف در داده‌ها بودند طبقه‌بندی شدند. برای پر کردن این شکاف‌ها یک پهنه احتمال آب بلند مدت که در آن وضعیت هر پیکسل شکاف در تراز‌های سطح آب مختلف ماهانه با وضعیت بلند مدت (ده ساله) خود مقایسه شود محاسبه شد. با استفاده از روش تکرار در احتمالات آب مختلف و معادله‌ای که فاصله مساحت پهنه آب ماهانه و مساحت پهنه آب بلند مدت را به حداقل برساند مساحت‌های حاصل از شکاف داده‌ها برای هر تصویر ماهانه پر شدند و در نهایت یک سری زمانی ده ساله مساحت سطح آب مخزن تشکیل شد. برای اعتبارسنجی نتایج پژوهش از پایگاه داده‌ سری‌های زمانی هیدرولوژیکی آب‌های سطحی (DAHITI) که شامل اطلاعات هیدرولوژیکی دریاچه‌ها و مخازن سدهای مناطق مختلف از سال 1992 می‌باشد استفاده شده است.
یافته‌ها
مساحت‌های سطح آب محاسبه شده مخزن سد زوجار در بازه ده ساله نشان داد که بیشترین مساحت سطح آب در آوریل 2013 و در تراز سطح آب 2/351 متر برابر با 3/140 کیلومترمربع و کمترین مساحت سطح آب در سپتامبر 2023 و در تراز سطح آب 1/316 متر برابر با 8/17 کیلومترمربع بوده است. بررسی‌ها نشان داد که مساحت سطح آب مخزن در دهه گذشته به طور پیوسته روند نزولی داشته است که تغییرات آب و هوایی و کاهش بارش در منطقه می‌تواند از مهم‌ترین دلایل آن باشد.از مقایسه مساحت سطح آب محاسباتی تصاویر ماهانه در این بازه ده ساله با پایگاه داده میانگین خطای محاسبات حدود 5/2 درصد بدست آمد. همچنین بیشترین اختلاف محاسبه سطح آب مربوط به جولای 2016 و در تراز سطح آب 4/344 متر حدود 3/4 کیلومتر مربع (6/3 درصد) بوده است.
نتیجه‌گیری
اگرچه مساحت سطح آب مخزن در هر تراز را ‌می‌توان به کمک منحنی اولیه سطح-ارتفاع مخزن محاسبه نمود اما این منحنی در طول زمان به دلایل مختلف مثل ته‌نشینی رسوبات توسط سیلاب‌ها تغییر می‌کند. بنابراین مساحت پهنه آبی رفتاری دینامیکی داشته و باید تغییرات زمانی آن در نظر گرفته شود. روش ارائه شده بر مبنای سنجش از دور با دقت بالایی قابلیت تفکیک پهنه‌های آب-خشکی و برآورد مساحت سطح آب مخزن سد را در سری زمانی بلند مدت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monitoring time series of reservoir water surface area changes using remote sensing approaches

نویسندگان [English]

  • Hamed Feizabady 1
  • Khalil Ghorbani 2
  • Abdolreza Zahiri 3
1 M.Sc. Student in Water Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Professor, Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Background and objectives
Dam reservoirs are considered as one of the most important sources of water supplies which estimating of their water surface area is necessary for many hydraulic and hydrodynamic subjects. Estimating of the water surface area is crucial for flood routing, diffusion and transport of pollutants, and modeling of reservoir Thermal Stratification. Due to the development of remote sensing and improvement
of the quality of satellite images, it is possible to derive valuable information about the trend of water area’s changes and evaluate them in long-term time series. In this research, a precise method based on remote sensing has been presented with the purpose of calculating the water surface area at any water level of reservoirs and lakes

Materials and methods
Monthly images of the Landsat-8 satellite were downloaded from April 2013 to September 2023 for the Zujar dam reservoir located in Spain with longitude -5/2318 °W and latitude 38/9295 °N from the archives of the United States Geological Survey (USGS) site. In order to validate the results of this study, Database of Hydrological Time Series of Inland Waters (DAHITI) has been used including the hydrological data of the lake and reservoirs of different regions from 1992. After radiometric correction, by combining five water indices MNDWI، NWI ،AWEIsh ،AWEInsh and TCwet, a threshold between water mask and land mask was detected for each monthly image which included the gaps in data caused by shades, clouds, cavities, ice and etc. To determine the status of the pixels, the status of water, land, or gap is determined. Using a identification threshold, monthly images were classified as land-water masks that included the gap in the data. To fill these gaps, a long-term water probability graph was computed that each gap pixel in monthly land-water mask was compared with its value in longterm probability. With the iteration method in different water probabilities and using an equation that minimized area between the monthly water area and the long-term water probability, the area of the data gaps was filled for each monthly image and finally a ten-years’ time series of water surface area was formed
Results
The water surface area values calculated in a ten-years period showed that the largest water area of the Zujar dam reservoir was at 351.2 m water level corresponding to April 2013 and the lowest water area at 316.1 m water level corresponding to September 2023 that are equal to 140.3 and 17.8 Km2, respectively. Investigations showed that the water surface area of the reservoir had a continuous downward trend in the last decade that climate changes can be one of the most important resoans. The comparison between the obtained results with the measurements of the database showed that the largest difference in the calculation of the water surface area was in July 2016, at the water level of 344.4 m, equal to 4.3 Km2 (3.6%), and the average error in the ten-year period was about 2.5%

Conclusion
Although the water surface area of the reservoir at each level can be calculated with the help of the initial of the area-elevation curve of the reservoir, but this curve changes over time due to various reasons such as the deposition of sediment by floods. Therefore, water surface area has a dynamic behavior and its time series variations should be considered. The proposed method in this study based on remote sensing was able to estimate the water surface area of the dam reservoirs in a long-term time series of ten years with high accuracy by separating water and land areas

کلیدواژه‌ها [English]

  • Remote sensing
  • water surface area
  • dam reservoir
  • DAHITI
  • Landsat
1.Hasan, M., Moody, A., Benninger, L., & Hedlund, H. (2019). How war, drought, and dam management impact water supply in the Tigris and Euphrates Rivers. Ambio. 48, 264-79.
2.Schwatke, C., Dettmering, D., & Seitz, F. (2020). Volume variations of small inland water bodies from a combination of satellite altimetry and optical imagery. Remote Sensing. 12(10), 1606.
3.Memon, A. A., Muhammad, S., Rahman, S., & Haq, M. (2015). Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. The Egyptian Journal of Remote Sensing and Space Science. 18(1), 99-106.
4.Amani, M., Salehi, B., Mahdavi, S., & Brisco, B. (2018). Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS journal of photogrammetry and remote sensing. 144, 119-36.
5.Condeça, J., Nascimento, J., & Barreiras, N. (2022). Monitoring the storage volume of water reservoirs using Google Earth Engine. Water Resources Research. 58 (3), e2021WR030026.
6.Gleick, P. H. (1993). Water in crisis. New York: Oxford University Press.
7.Feng, M., Sexton, J. O., Channan, S., & Townshend, J. R. (2016). A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. International Journal of Digital Earth. 9(2), 113-33.
8.Liu, S., Wu, Y., Zhang, G., Lin, N., & Liu, Z. (2023). Comparing water indices for landsat data for automated surface water body extraction under complex ground background: a case study in Jilin Province. Remote Sensing. 15(6), 1678.
9.Yao, F., Wang, J., Wang, C., & Crétaux, J. F. (2019). Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment. 232, 111210.
10.Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing. 27(14), 3025-33.
11.Ding, F. (2009). Study on information extraction of water body with a new water index (NWI). Sci. Surv. Mapp. 34(4), 155-8.
12.Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote sensing of environment. 140, 23-35.
13.Kauth, R. J., & Thomas, G. S. (1976). The tasselled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In LARS symposia (p. 159).
14.Fang, Y., Li, H., Wan, W., Zhu, S., Wang, Z., Hong, Y., & Wang, H. (2019). Assessment of water storage change in China’s lakes and reservoirs over the last three decades. Remote Sensing. 11(12), 1467.
15.Schwatke, C., Scherer, D., & Dettmering, D. (2019). Automated extraction of consistent time-variable water surfaces of lakes and reservoirs based on landsat and sentinel-2. Remote Sensing. 11(9), 1010.
16.Yulianto, F., Kushardono, D., Budhiman, S., Nugroho, G., Chulafak, G. A., Dewi, E. K., & Pambudi, A. I. (2022). Evaluation of the threshold for an improved surface water extraction index using optical remote sensing data. The Scientific World Journal.
17.Bonnema, M., David, C. H., Frasson, R. P., Oaida, C., & Yun, S. H. (2022). The global surface area variations of lakes and reservoirs as seen from satellite remote sensing. Geophysical Research Letters. 49(15), e2022GL098987.
18.Sadki, M., Munier, S., Boone, A., & Ricci, S. (2023). Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1. 0) over Spain. Geoscientific Model Development. 16(2), 427-48.
19.Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote sensing of environment. 122, 11-21.
20.Dettmering, D., Schwatke, C., Boergens, E., & Seitz, F. (2016). Potential of ENVISAT radar altimetry for water level monitoring in the Pantanal wetland. Remote Sensing. 8(7), 596.
21.Crétaux, J. F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M. C., Nino, F., Del Rio, R. A., Cazenave, A., & Maisongrande, P. (2011). SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in space research. 47(9), 1497-507.
22.McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing. 17(7), 1425-32.
23.Crist, E. P. (1985). A TM tasseled cap equivalent transformation for reflectance factor data. Remote sensing of Environment. 17(3), 301-6.