تجزیه و تحلیل الگوریتم تعادل انرژی سطحی برای زمین (SEBAL) در تخمین تبخیر و تعرق محصولات کشاورزی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

نویسنده مسئول، استادیار گروه مهندسی آب، مجتمع آموزش عالی تربت‌جام، تربت‌جام، ایران

چکیده

سابقه و هدف: یکی از مراحل اساسی در مدیریت منابع آب، تخمین دقیق پارامتر‌های بیلان آب است. برآورد صحیح تبخیرتعرق و تعیین نیاز آبی گیاهان امری حیاتی برای بهبود مدیریت آب و افزایش کارایی مصرف آب است. اگرچه روش‌های اندازه‌گیری تبخیرتعرق با استفاده از داده‌های ایستگاه‌های زمینی، اندازه‌گیری‌های نقطه‌ای تبخیرتعرق را با دقت بالا ارائه می‌دهند. اما نیاز به نقشه‌های تبخیر و تعرق منطقه‌ای برای پایش منابع آب احساس می‌شود. در این راستا، مدل‌های تخمین تبخیرتعرق ماهواره‌ای مانند SEBAL می‌تواند مفید واقع شود. البته کارایی این مدل در اقلیم‌ها و محصولات مختلف متفاوت است. بنابراین، هدف این مطالعه محاسبه تبخیرتعرق با استفاده از مدل SEBAL با تصاویر ماهواره‌ای Landsat 8 در پلتفرم گوگل ارث انجین و ارزیابی دقت مدل در برابر روش FAO-Penman-Monteith (ETo) و تبخیر و تعرق پوشش گیاهی (ETc) است.
مواد و روش‌ها: این مطالعه در منطقه جنگاه شهرستان تربت جام واقع در استان خراسان رضوی در بازه زمانی بین سال‌های 1392 تا 1401 انجام شد. برای این مطالعه، الگوریتم محاسباتی با استفاده از معادلات مربوطه به زبان جاوا در گوگل ارث انجین نوشته شد و تصاویر روزانه تبخیرتعرق برای منطقه مورد مطالعه دریافت گردید. سپس تبخیرتعرق روزانه برای منطقه مورد نظر با استفاده از نرم‌افزار QGIS استخراج گردید. به منظور ارزیابی دقت مدل سبال در برابر تبخیرتعرق گیاه مرجع و تبخیرتعرق پوشش گیاهی به روش فائو پنمن مانتیث از شاخص‌های آماری مانند ضریب همبستگی (CC)، بایاس نسبی (RBIAS)، خطای ریشه میانگین مربعات ریشه (RMSE) و میانگین خطای مطلق (MAE) استفاده گردید.
یافته‌ها: نتایج نشان دادند که مدل سبال دارای همبستگی قوی با تبخیرتعرق پوشش گیاهی منطقه است (85/0=R²). این مدل مقادیر تبخیرتعرق روزانه پوشش گیاهی منطقه را با بایاس مثبت کمی بیش از حد تخمین زد(016/0 میلی‌متر). اعتبار سنجی مدل در مقابل تبخیرتعرق پوشش گیاهی خطا‌های نسبتاً جزئی را نشان داده و مقادیر میانگین مطلق خطا و ریشه میانگین مربعات خطا به ترتیب 76/0 میلی‌متر و 97/0 میلی‌متر در روز بوده است.
نتیجه‌گیری: افزایش دسترسی به داده‌های ماهواره‌ای و پیشرفت‌های جدید در تکنیک‌های سنجش از دور، راه را برای سیستم‌هایی هموار می‌کند که قادرند استفاده از آب توسط ذینفعان مختلف را نزدیک به زمان واقعی در مقیاس‌های مکانی مختلف پایش کنند. در این راستا، مدل‌های تخمین تبخیر و تعرق ماهواره‌ای مانند SEBAL می‌توانند مفید باشند. البته، کارایی این مدل در اقلیم‌ها و محصولات مختلف متفاوت است. با توجه به نتایج پژوهش، مشاهده شد که روش SEBAL مقادیر واقعی تبخیر و تعرق را با نتایج قابل قبول محاسبه می‌کند. این نتایج نشان می‌دهد که استفاده از این روش می‌تواند در منطقه مورد مطالعه مناسب باشد. به طور خلاصه، یافته‌ها نشان می‌دهد که الگوریتم SEBAL یک رویکرد مناسب برای تخمین تبخیر و تعرق محصول است و می‌تواند به عنوان یک ابزار مؤثر برای مدیریت منابع آب در مزارع و سایر زمینه‌های مشابه عمل کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the Surface Energy Balance Algorithm for Land (SEBAL) in Estimating Crop Evapotranspiration

نویسنده [English]

  • zahra Shirmohammadi-Aliakbarkhani
Corresponding Author, Assistant Prof., Dept. of Water Science, University of Torbat-e Jam, Torbat-e Jam, Iran.
چکیده [English]

Background and objectives: One of the key stages in water management involves accurately estimating water budget components. Proper estimations of the plant ET and water requirements of plants are very important for improving water management and increasing the water consumption efficiency. Although ground-based ET measurement methods provide high-accuracy point measurements, regional ET maps are needed for monitoring water resources. In this regard, satellite ET estimation models such as SEBAL can be useful. Of course, the efficiency of this model is different in various climates and crops. Therefore, The aim of this study is to calculate ET rates using the SEBAL model with Landsat 8 satellite imagery On the Google Earth Engine platform and assess the model's accuracy against FAO–Penman-Monteith method (ET0) and crop evapotranspiration (ETc).
Materials and methods: This study was conducted in Jangah area of Torbat-e Jam city located in Razavi Khorasan province, from 2013 to 2023. A Java program was developed using the provided equations in Google Earth Engine for this algorithm. Daily evapotranspiration images were acquired for the study area, and evapotranspiration data were extracted using QGIS software. The prediction performance of the SEBAL model against the reference ET0 and ETc was evaluated using widely accepted statistical indices such as the correlation coefficient (CC), relative bias (RBIAS), root mean squared error (RMSE), and mean absolute error (MAE).
Results: Results revealed a strong correlation between the model and ETc estimates (R²=0.85). The model slightly overestimated daily total ET values by only 0.016 mm (positive bias). Validation of the model against ETc indicated relatively minor errors, with daily mean absolute and root mean square errors of 0.76 mm and 0.97 mm, respectively.
Conclusion: The growing accessibility of open-access satellite data and advancements in remote sensing technologies are opening the door to systems capable of monitoring water usage by different stakeholders in near-real-time across various spatial scales. In this regard, satellite ET estimation models such as SEBAL can be useful. Of course, the efficiency of this model is different in various climates and crops. Based on the research findings, it was observed that the SEBAL method calculates actual evapotranspiration values with acceptable results. These results indicate that the use of this method can be suitable for the studied area. In summary, the findings indicate that the SEBAL algorithm is a suitable approach for estimating crop evapotranspiration and can serve as an effective tool for water resource management in farms, and other similar contexts.

کلیدواژه‌ها [English]

  • Evapotranspiration
  • Google Earth Engine
  • Remote Sensing
  • Sustainable agriculture
  • Water Management
1.Noori, R., Maghrebi, M., Jessen, S., Bateni, S. M., Heggy, E., Javadi, S., Noury, M., Pistre, S., Abolfathi, S., & AghaKouchak, A. (2023). Decline in Iran’s groundwater recharge. Nature Communications, 14 (1), 6674. https:// doi.org/10.1038/s41467-023-42411-2.
2.Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234.
3.Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133 (4), 380-394. https://doi.org/10.1061.
4.Zamani Losgedaragh, S., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523-531. https://doi.org/10.1016/j. jhydrol. 2018.04.025.
5.Rawat, K. S., Bala, A., Singh, S. K., & Pal, R. K. (2017). Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India. Agricultural Water Management, 187, 200-209. https://doi. org/10.1016/j. agwat. 2017.03.015.
6.Evcen, A., & Yağcı, A. L. (2022). Gerçek Evapotranspirasyonun Landsat Uydu Görüntüleri Kullanarak SEBAL Modeli ile Hesaplanması: Bolu/Yeniçağa Örneği. Turkish Journal of Remote Sensing and GIS, 3 (2), 172-182. https://doi.org/ 10.48123/rsgis. 1126221.
7.Shamloo, N., Taghi Sattari, M., Apaydin, H., Valizadeh Kamran, K., & Prasad, R. (2021). Evapotranspiration estimation using SEBAL algorithm integrated with remote sensing and experimental methods. International Journal of Digital Earth, 14 (11), 1638–1658. https://doi. org/10.1080/17538947.2021.1962996.
8.Dhruw, M., Pandey, V. K., & Verma, S. (2023). Actual Crop Evapotranspiration Estimation of Wheat Crop Using SEBAL Algorithm and Remotely Sensed Data. Current Journal of Applied Science and Technology, 42 (20), 15-25. https://doi. org/10.9734/cjast/2023/v42i204150.
9.Vicente Liendro Moncada, J., José Araújo da Silva, T., José, J. V., Bonfim-Silva, E. M., Fenner, W., & Oliveira, N. P. R. de. (2022). Evapotranspiration mapping of cotton fields in Brazil: Comparison between SEBAL and FAO-56 method. Geocarto International, 37 (17), 5133-5149. https://doi.org/10.1080/10106049.2021.1920633.
10.Nosrati, K., Mohseni Saravi, M., Ahmadi, H., & Aghighi, H. (2015). Evapo-transpiration estimation in Taleghan Drainage Basin using MODIS images and SEBAL model. Journal of Range and Watershed Managment, 68 (2), 385-398. https://doi.org/10. 22059/jrwm. 2015.54937.
11.Karbasi, M., Moghadam, M., Nikbakht, J., & Kaviani, A. (2016). Estimation of crop actual evapotranspiration using SEBAL algorithm (Case study: Khoramdareh region at Zanjan province). Iranian Journal of Ecohydrology, 3 (3), 427-437. https://doi.org/10. 22059/ije.2016.60031.
12.Goshehgir, A. S., Golabi, M., & Naseri, A. A. (2018). Comparison of actual evapotranspiration estimated using gram-schmidt method and SEBAL algorithm with lysimeteric data (Case study; Amir Kabir Sugarcane Argo-Industry). Iran-Water Resources Research, 14 (1), 125-139.
13.Rahimi, S., Gholami Sefidkouhi, M. A., Raeini-Sarjaz, M., & Valipour, M. (2015). Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Archives of Agronomy and Soil Science, 61 (5), 695-709. https://doi.org/10. 1080/03650340.2014.944904.
14.Morshedi, A., Jafari, H., & Onabi Milani, A. (2022). Estimation of Actual Evapotranspiration of Wheat Using SEBAL Algorithm Compared to Lysimetric Results under Standard Conditions in Tabriz and Karaj Research Stations. Journal of Water Research in Agriculture, 36 (1), 21-33. https://doi. org/10.22092/jwra. 2022.356223.896.
15.Kamyab, A. D., Mokhtari, S., & Jafarinia, R. (2022). A comparative study in quantification of maize evapotranspiration for Iranian maize farm using SEBAL and METRIC-1 EEFLux algorithms. Acta Geophysica, 70 (1), 319-332. https://doi.org/10. 1007/s11600-021-00704-4.
16.Yagci, A. L., & Santanello, J. A. (2018). Estimating Evapotranspiration From Satellite Using Easily Obtainable Variables: A case study over the Southern Great Plains, U. S. A. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (1), 12-23. https://doi.org/ 10.1109/JSTARS. 2017.2753723.
17.Li, Z. L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., & Zhang, X. (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors (Basel, Switzerland), 9 (5), 3801-3853. https:// doi.org/10.3390/s90503801.
18.Mohan, M. M. P., Kanchirapuzha, R., & Varma, M. R. R. (2020). Review of approaches for the estimation of sensible heat flux in remote sensing-based evapotranspiration models. Journal of Applied Remote Sensing, 14 (4), 041501. https://doi.org/10.1117/1.JRS.14.041501.
19.Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. Journal of Irrigation and Drainage Engineering, 131 (1), 85-93. https:// doi.org/ 10.1061/ (ASCE)0733-9437(2005)131:1(85).
20.French, A. N., Hunsaker, D. J., Sanchez, C. A., Saber, M., Gonzalez, J. R., & Anderson, R. (2020). Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agricultural Water Management, 239, 106266. https:// doi.org/ 10.1016/ j.agwat.2020. 106266.
21.Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration guidelines for computing crop requirements. FAO Irrig. Drain. Report modeling and application. J. Hydrol. 285, 19-40.
22.Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229 (1), 87-100. https:// doi.org/ 10.1016/ S0022-1694 (99)00202-4.
23.Allen, R., Tasumi, M., Trezza, R., Bastiaanssen, W., & Waters, R. (2002). Surface Energy Balance Algorithms for Land. Advanced Training and User’s Manual-Idaho Implementation, Version 1.0, 97p.
24.Ghaemi., M., Raeini Sarjaz, M., & Mosavi, M. (2013). Estimating the crop coefficient and the water requirement of the Gascogne wheat by using energy balance method in Mashhad. Irrigation and Water Engineering, 3 (3), 58-68.
25.Zare khormizi, H., Tavili, A., & Ghafarian Malamiri, H. R. (2021). Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship. Iranian Journal of Remote Sensing & GIS, 13 (3), 73-92. https:// doi.org/ 10.52547/ gisj.13.3.73. [In Persian]
26.Ghamarnia, H., & Rezvani, V. (2015). An Estimation of Evapotranspiration Using SEBAL Method and its Comparison with Penman-Montieth A Case Study of Bilevar Plain, Western Iran. International Journal of Water Resources Development, Vol. (III)– No. (01), 16–31.
27.Ghaderi, A., Dasineh, M., Shokri, M., & Abraham, J. (2020). Estimation of actual evapotranspiration using the remote sensing method and SEBAL algorithm: A case study in Ein Khosh Plain, Iran. Hydrology, 7 (2), 36.