مقایسه میزان رسوب‌گذاری در کانال‌های آبگیر فیدر یک و فیدر دو

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه مهندسی آب، دانشگاه زابل، زابل، ایران.

2 نویسنده مسئول، دانشیار گروه مهندسی آب، دانشگاه زابل، زابل، ایران

3 دانش‌آموخته کارشناسی‌ارشد گروه مهندسی آب، دانشگاه زابل، زابل، ایران

چکیده

چکیده
سابقه و هدف: رودخانه‌ها یکی از ارزان‌ترین و در دسترس‌ترین منابع آب می‌باشند. ساخت آبگیرهای جانبی از قدیمی‌ترین روش‌های استفاده از آب رودخانه‌ها می‌باشد. دشت سیستان در جنوب ‌شرقی کشور وابستگی شدیدی به منابع آب‌های سطحی دارد. در شرایط کنونی با توجه به سال‌ها خشکسالی در این دشت، تنها منبع آبی دشت سیستان، مخازن چاه‌نیمه می‌باشند. کانال آبگیر فیدر یک نخستین مسیر هدایت جریان آب از رودخانه سیستان به سمت مخازن چاه‌نیمه‌ها می‌باشد. در سال‌های اخیر کانال فیدر دو، با توجه به ضرورت افزایش آبگیری مخازن چاه‌نیمه از رودخانه سیستان احداث گردید. شیب کم دشت سیستان، کانال‌های آن را مستعد رسوب‌گذاری نموده است و از این رو سالانه هزینه‌های زیادی صرف لایروبی رودخانه سیستان و کانال‌های وابسته می‌شود.
مواد و روش‌ها: مطالعات هیدرولیک رودخانه، انتقال رسوب و تغییرات آبراهه از طریق مدل فیزیکی و یا مدل ریاضی انجام می-گیرد. مدل ریاضی HEC RAS، یکی از مدل‌های رایج حل معادلات جریان ماندگار و غیر ماندگار به‌منظور تعیین تراز سطح آب و مشخصات هیدرولیکی جریان می‌باشد و می‌تواند محاسبات مربوط به رسوبات را با داده‌های جریان شبه غیرماندگار انجام دهد. در پژوهش حاضر از HEC RAS 6 به‌ منظور انجام شبیه‌سازی نحوه رسوب‌گذاری در کانال‌های آبگیر‌ فیدر یک و فیدر دو در شرایط رقوم حداقل سطح آب مخازن چاه‌نیمه استفاده گردید. شبیه‌سازی جریان در مدل به صورت شبه‌ غیردائمی، با استفاده از روش گام‌به-گام استاندارد و براساس هیدروگراف سالانه به حجم یک میلیارد متر مکعب انجام گردید. در این تحقیق تابع انتقال رسوب توفالتی برای تعیین ظرفیت رسوب مقاطع در نظر گرفته شد.
یافته‌ها: براساس نتایج این تحقیق، معادله‌ انتقال رسوب توفالتی با شاخص جذر میانگین مربعات خطا برابر با 52162 تن و شاخص ضریب تبیین برابر 89/0 به عنوان بهترین رابطه رسوبی در مدل HEC RAS برای رودخانه سیستان انتخاب گردید. براساس نتایج مدل‌سازی، در هر دو سناریوی آبگیری کانال آبگیر فیدر یک و کانال آبگیر فیدر دو در شرایط رقوم حداقل سطح آب مخازن چاه‌نیمه، مقاطع عرضی رودخانه سیستان مورد فرسایش قرار می‌گیرند. در کانال آبگیر فیدر یک حجم فرسایش برابر با 125000 متر مکعب رخ می‌دهد که باعث کاهش تراز بستر کانال فیدر یک به مقدار9/2 متر می‌گردد در حالیکه در شرایط یکسان در کانال آبگیر فیدر دو، حجم رسوب‌گذاری برابر با 1572000 متر مکعب ایجاد می‌گردد که باعث افزایش تراز بستر آن به مقدار 2/5 متر می‌شود.
نتیجه‌گیری: در شرایط رقوم حداقل سطح آب مخازن چاه‌نیمه، کانال آبگیر فیدر یک فرسایش پذیر و کانال آبگیر فیدر دو رسوبگذار می‌باشد بنابراین کانال فیدر یک نسبت به کانال فیدر دو بدلیل هزینه‌های لایروبی کمتر، برتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the Amount of Sedimentation in the Intake Canals of Feeder One and Feeder Two

نویسندگان [English]

  • mohammad kalantari 1
  • Farzad Hassanpour 2
  • Ramin Nakhaei Moghadam 3
1 M.Sc. Graduate, Dept. of Water Engineering, Zabol University, Zabol, Iran
2 Corresponding Author, Associate Prof., Dept. of Water Engineering, Zabol University, Zabol, Iran
3 M.Sc. Graduate, Dept. of Water Engineering, Zabol University, Zabol, Iran.
چکیده [English]

Abstract
Background and objectives: Rivers are one of the cheapest and most accessible water resources. The construction of lateral intakes is one of the oldest methods of using river water. The Sistan plain in the southeast of the country is highly dependent on surface water resources. Currently, due to the years of drought, the only water source in the Sistan region is Chah Nimeh Reservoirs. The Feeder one intake canal is the first way for directing water from the Sistan River to the reservoirs of Chahnime. In recent years, the Feeder two intake canal was built due to the need to increase the water intake of Chah-Nimeh reservoirs from the Sistan River. The low slope of the Sistan plain has made its channels prone to sedimentation and because of this, a lot of money is spent on dredging the Sistan River and the network of related canals
Materials and methods. River hydraulic studies, sediment transport and waterway changes are carried out through physical or mathematical models. The HEC RAS mathematical model is one of the models for solving steady and unsteady flow equations in order to determine the water level and hydraulic characteristics of the flow and it can perform calculations of moving bed sediment with quasi-unsteady flow data. In the current study, HEC RAS 6 was used to simulate the sediment deposition in the intake canals of feeder one and feeder two in the conditions of the minimum water level of Chah Nimeh reservoirs. The simulation of the flow in the model was carried out in the quasi-unsteady method, using the standard step-by-step method and based on the annual flood hydrograph with a volume of one billion cubic meters. In this research, the toffalti sediment transport equation was considered to determine the sediment capacity of sections.
Results: Based on the results of this research, the tuffalti sediment transport equation with Root Mean Square Error (RMSE) index equal to 52162 tons and determination coefficient (R2) index equal to 0.89 was chosen as the best sediment relationship in HEC RAS model in the Sistan river. Based on the modeling results, in both scenarios of water intake of Feeder one and Feeder two intake canals, in the condition of the minimum water level of Chah-Nimeh reservoirs, the cross sections of the Sistan River will be eroded also, an erosion volume equal to 125000 cubic meters occurs in the intake canal of feeder one, which causes the level of the bed of feeder one canal to decrease by 2.9 meters, while under the same conditions in Feeder two canal, the volume of sedimentation is equal to 1572000 cubic meters, which increases its bed level by 5.2 meters.
Conclusion: In the conditions of the minimum water level of the Chahnimeh reservoirs, the intake canal of Feeder One is erodible and the intake canal of Feeder Two is Sedimentary. Therefore, Feeder One canal is superior to Feeder Two canal due to lower dredging costs.

کلیدواژه‌ها [English]

  • Sedimentation
  • Sistan River
  • mathematical model
  • HEC RAS
1.Jalili, H., Hosseinzadeh Dalir, A., & Farsadizadeh, D. (2011). The effect of the geometry of the catchment opening on the amount and pattern of sedimentation in the lateral catchment. Iranian Water Research Journal. 5 (9), 1-10. [In Persian]
2.Rahiminezhad, Z., & Tayari, O. (2015). Modification and Training of Khabr’s River of Baft, using HEC-RAS model. Journal of Irrigation and Water Engineering. 5 (19), 17-29. [In Persian]
3.Montaseri, H., Ghodsian, M., & Dehghani, A. (2009). Experimental Study on turbulent flow field around submerged vanes at a lateral diversion in a U shape rectangular channel bend. J. Agric. Sci. Natur. Resour. 16 (2), 221-233. [In Persian]
4.Seyedian, S., & Shafaeibajestan, M. (2010). Comparison of Suspended Load Delivered Into the Intake by Changing the Canal Side Angle from Perpendicular to 45 Degrees. Journal of Water and Soil. 24 (5), 985-994. [In Persian]
5.Gibson, S., Brunner, G. W., Piper, S., & Jensen, M. (2006). Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC). Reno, NV, USA. 57-64.
6.Behrangi, F., Banihashemi, M. A., Pourbojarian, A., & Amini, M. (2006). Comparing results of HEC-RAS model with observed values in sedimentation of Latian dam's reservoir. 8th International River Engineering Conference. 26-28.
[In Persian]
7.Akbari, Gh. M., Faghfourmaghrebi, M., & Tarem, S. (2011). Examining the combination of sediment transport equations and methods for calculating particle fall speed in the modeling of surface bed form changes. The 6th National Congress of Civil Engineering. [In Persian]
8.Pirou, M., Ghamshi, M., Nohani, A., & Ravansalar, M. (2012). Investigating the state of river bed sediment with HEC-RAS.4 numerical model, a case study of Bashar Yasouj River. National Congress of Inter-basin water transfer (Challenges and Opportunities). [In Persian]
9.Motlabian, M., & Hassanpour, F. (2013). A study of the locus of the erosion and sedimentation in Sistan River using
HEC-RAS model. International Journal of Scientific & Engineering Research. 4 (10), 1377-1386.
10.Jabari, A., Hosseini, S. A., Haghiabi, A. H., Emam Gholizadeh, S., & Behnia, A. K. (2014). Prediction of the sediment load in the river by HEC-RAS. Journal of Irrigation and Water Engineering.4 (16), 12-23. [In Persian]
11.Moradinejad, A., Haghiabi, A., & Torabi, H. (2014). Selecting the most appropriate sediment transport equations by numerical model HEC-RAS.4.1 (Case Study: Markazi Province Qara-chai River). Watershed Management Research Journal. 27 (104), 123-131. [In Persian]
12.Noroozi, G., Tahmasebipour, N., Zeinivand, H., & RahimiNasab, M. (2014). A Simulation of Sediment Transport of Floods and its Temporal Variation Using HEC RAS: A Case Study of Poldokhtar Station of Kashkan River, Lorestan Province. International Bulletin of Water Resources and Development. 2 (2), 66. [In Persian]
13.Berghout, A., & Meddi, M. (2016). Sediment transport modelling in wadi Chemora during flood flow events. Journal of Water and Land Development. 31, 23-31.
14.Hameed, L. K. (2016). Estimating of Sediment Estimating of Sediment Transport Rates for Euphrates River in Al- Hindiya City Using HEC-RAS Model. The Arab Journal of Sciences & Research Publishing. 2 (3), 77-90.
15.Ochiere, H. O. (2016). Modelling of sedimentation dynamics in an underground canal in southwest kano irrigation scheme-kenya. A thesis of the Master of Science Degree in Agricultural Engineering of Egerton University.
16.Ghimire, G. R. (2016). Developing sediment transport and deposition prediction model of lower ohio river near the Olmsted locks and dam area. Thesis for: MS in Civil Engineering Advisor: Dr. Bruce A. DeVantier. Southern Illinois University Carbondale.
17.Das, B., & Sil, B. S. (2017). Assessment of Sedimentation in Barak River reach using HEC RAS. Development of water resources in india. Water Science and Technology Library. 75, 95-102.
18.Haque, M. H., Shaun, S., Kibria, K. M., Mohib, K. M., Sultana, A., & Mamoon, W. B. (2019). Sediment Modeling of Kobadak River by HEC RAS. International Journal of Science and Research (IJSR). 10 (4), 516-521.
19.Moradinejad, A., & Hosseini, A. (2022). Accuracy Estimation of Sediment Discharge Transfer Relationships of Khondab River, Joshirvan Station using HEC-RAS Model. Journal of Environment and Water Engineering (EWE). 8 (1), 161-176. [In Persian]
20.Thiyagarajan, S. V. (2022). Sediment Transport Modelling in Stream Flow by HEC-RAS Model-A State-of-the-Art. In book: Recent Advances in Civil Engineering. 481-491.
21.Lakzaeianpour, Gh., Delbari, M., & Rostami, M. (2016). Environmental study of Chahnime water resources. International Conference on Innovation in Science & Technology. [In Persian]
22.Nourzaei, A. (2018). Specialized blog on agricultural issues, rural, economic and social development, new and transformative ideas. [In Persian]
23.Ahmari, J., Tajrishi, M., & Torabi, A. (2001). The study of sedimentation process in Sistan river. 3rd Iranian Hydraulic Conference. University of Tehran. 183-193. [In Persian]
24.Amiri, M., Keykha, M., & Hassanpour, F. (2015). Evaluating the performance of Sistan and Zahak diversion dams in Sistan River using HEC-RAS hydraulic model. Scientific and Research Electronic Journals. 20 (4), 51-67. [In Persian]
25.Mohandesin Moshaver Absaran. (2016). Studies of the second stage of water supply in the Sistan plain (Sistan river system). Ministry of Energy, Sistan and Baluchistan Regional Water Company. 97-126. [In Persian]
26.HEC RAS (Hydrologic Engineering Centre - River Analysis System) In an Underground Canal in Southwest Kano Irrigation Scheme. (2016). International Journal of Engineering Science Invention, Kenya. 4 (9), 15-31.
27.US Army corps of Engineer. (2008). Engineering Design Manual – Channel stability assessment for flood control project.
28.Toffaletti, F. B. (1968). A Procedure for Computation of the Total River Sand Discharge and detailed Distribution, Bed to Surface. Committee on Channel Stabilition, U.S. Army corps od Engineers Watweways Experiment Station Technical Report NO. 5.
29.Shafai Bajestan, M. (2008). Basic Theory and Practice of Hydraulics of Sediment Transport. Second Edition, Shahid Chamran University Press, 549 p. [In Persian]
30.Mohandesin Moshaver Samaneh Farayandehaye Mohiti. (2008). Evaporation studies in Chahnime 4. Ministry of Energy, Sistan and Baluchistan Regional Water Company. [In Persian]
31.Rahimi, N., Hassanpour, F., & Sharifazari, S. (2018). Determination of the Most Appropriate Statistical Method for the Suspended Load Estimation in the Sistan River. Watershed Management Research Journal. 30 (4), 72-82. [In Persian]
32.Sleibi Mustafa, A., Oleiwi Sulaiman, S., & Al-Alwani, Kh. M. (2017). Application of HEC-RAS Model to Predict Sediment Transport for Euphrates River from Haditha to Heet. Al-Nahrain Journal for Engineering Sciences. 20 (3), 570-577.
33.Moradinejad, A., & Hosseini, S. A. (2022). Accuracy Estimation of Sediment Discharge Transfer Relationships of Khondab River, Joshirvan Station using HEC-RAS Model. Environment and Water Engineering (EWE).8 (1), 161-176. [In Persian]
34.Mohammadi, S., Hasanpour, F., Sharifazari, S., & Foroughi, F. (2021). Assessment of Modern Regression Methods to Suspended Sediment Load Estimation in the Sistan River. Journal of Irrigation and Water Engineering.12 (2), 1-15. [In Persian]
35.Kalantari, M., & Hassanpour, F. (2023). Investigating the Effect of Water Level of Chahnimeh Reservoirs on Sedimentation of Feeder 2 Canal. Journal of Irrigation and Water Engineering. 14 (1), 100-117. [In Persian]