بررسی تاثیر مایه‌زنی استرپتومایسس چارترئوسیس مولد اگزوپلی‌ساکارید بر شاخص‌های رشدی، فیزیولوژی و عملکرد گوجه‌فرنگی در سطوح تنش خشکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استادیار بیوتکنولوژی کشاورزی، پژوهشکده ژنتیک و زیست‌فناوری طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

4 دانشیار گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

5 پژوهشگر پسادکتری، مؤسسه ماکس پلانک، ماگدبورگ، آلمان

چکیده

خشکی به عنوان یک تنش کنترل نشده تقریباً تمام مراحل رشد و نمو گیاه را به صورت مستقیم یا غیرمستقیم تحت تأثیر قرار می‌دهد. استرپتومایس‌ از جمله معروف ترین جنس اکتینوباکتر‌ها بوده که از ظرفیت بالایی برای رشد و تکثیر در خاک های شور و خشک برخوردار می‌باشد. بر این اساس هدف از انجام پژوهش حاضر بررسی میزان تولید اگزوپلی‌ساکارید در شرایط عادی و سطوح تنش خشکی شبیه‌سازی شده با پلی‌اتیلن گلایکول 6000 در جدایه‌های منسوب به اکتینوباکتر و انتخاب جدایه برتر و بررسی تاثیر مایه‌زنی آن بر شاخص‌های رشدی، فیزیولوژی، عملکرد و غلظت عناصر فسفر و پتاسیم در گیاه گوجه فرنگی رقم Y (Lycopersicon esculentum) در شرایط تنش خشکی می‌باشد.
در این پژوهش بررسی سنجش رشد و تولید اگزوپلی ساکارید تعداد 5 جدایه اکتینوباکتری در سطوح تنش خشکی 73/0- و 29/0-، 0 مگاپاسکال در سه زمان انکوباسیون 25 و 14، 7 روز در شرایط آزمایشگاهی مورد بررسی قرار گرفته که جدایه برتر از میان آن‌ها برای آزمایش گلدانی انتخاب و خصوصیات محرک رشدی شامل حلالیت فسفر و تولید ایندول استیک اسید آن مورد ارزیابی قرار گرفت. آزمایش گلدانی به صورت فاکتوریل در قالب طرح کامل تصادفی در سه تکرار اجرا گردید. فاکتورهای آزمایشی شامل استرپتومایسس (مایه‌زنی Bs-47، عدم مایه‌زنی B0)، سطوح تنش خشکی (شامل: 90-80 درصد آب قابل استفاده (بدون تنش D0)، 60-45 درصد آب قابل استفاده (تنش نسبتا شدید D1)، 30-20 درصد آب قابل استفاده (تنش شدید D2) تعیین گردید. پس از پایان دوره رشد گیاه، شاخص‌های رشدی، فیزیولوژیک، جذب عناصر غذایی و عملکرد گوجه فرنگی ارزیابی شد.
بر اساس نتایج جدایه 47 بیش‌ترین میزان تولید اگزوپلی‌ساکارید را در سطوح تنش خشکی 73/0-، 29/0-، 0 مگاپاسکال به ترتیب به میزان 26/4، 18/6، 5/8 گرم در لیتر پس از گذشت زمان انکوباسیون 25 روز به ثبت رساند. بررسی نتایج نشان داد که درصد کربوهیدرات کل با افزایش زمان انکوباسیون رشد و همچنین سطوح تنش خشکی در جدایه باکتری 47 روند افزایشی داشت. کربوهیدرات کل در دو جدایه 16و 91 با افزایش زمان در سطح تنش شدید 73/0- مگاپاسکال روند کاهشی به ثبت رساند. نتایج توالی‌یابی جدایه منتخب 47 که از توانایی مطلوب تولید اگزوپلی‌ساکارید و خصوصیات محرک رشد برخوردار بود نشان داد که بیش-ترین همولوژی را با گونه استرپتومایسس چارترئوسیس داشته و با شماره دسترسی KJ152149 در پایگاه NCBI ثبت گردید. بررسی طیف مادون قرمز اگزوپلی‌ساکارید تولیدی جدایه باکتری برتر، الگوی متنوعی از پیک های جذب را از 3450 تا 820 سانتی متر نشان داد که تایید کننده ماهیت پلی ساکاریدها و برهمکنش‌های قوی بین مولکولی و درون مولکولی در زنجیره های اگزوپلی‌ساکارید می‌باشد. تنش خشکی سبب کاهش خصوصیات رشدی، فیزیولوژیک و غلظت فسفر و پتاسیم و همچنین افزایش میزان پرولین برگ و فعالیت آنزیم‌های آنتی اکسیدانی در گیاه گردید. نتایج پایش گلخانه‌ای نشان داد که در سطح تنش نسبتا شدید (60-45 درصد آب قابل استفاده) مایه‌زنی استرپتومایسس سبب افزایش زیست توده اندام هوایی (4/35 درصد) و ریشه (7/30 درصد)، قطر ساقه (6/30 درصد)، شاخص کلروفیل (3/12 درصد) و ظرفیت نسبی آب برگ (68/6 درصد) غلظت فسفر (04/19 درصد)، غلظت پتاسیم (23/28 درصد) و عملکرد (3/155 درصد) در مقایسه با شاهد (عدم مایه‌زنی) شد. مایه‌زنی استرپتومایسس در سطوح تنش نسبتا شدید و شدید روندی کاهشی به ترتیب به میزان 4/19، 6/16 درصد در آنزیم کاتالاز و همچنین روند کاهشی 5/12، 6/11 درصدی در فعالیت آنزیم سوپراکسید دیسموتاز در مقایسه با شاهد (شرایط بدون تنش) نشان داد.
بررسی نتایج نشان می‌دهد که مایه‌زنی استرپتومایسس با دارا بودن ویژگی‌ مطلوب تولید اگزوپلی‌ساکارید و سایر ویژگی‌های محرک رشد با ایجاد شرایط مناسب برای گیاه و بهبود حفظ آب و جذب بهتر مواد غذایی در محیط ریشه سبب کاهش تنش خشکی و حفظ ثبات فیزیولوژیک گیاه در برابر سطوح تنشی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the impact of exopolysaccharide-producing Streptomyces chartreusis inoculation on growth, physiology, and yield of tomato under different drought stress levels

نویسندگان [English]

  • Reza Khodadadi 1
  • Reza Ghorbani 2
  • Ali Pakdin-parizi 3
  • seyd alireza mavahedi-naeini 4
  • mohamadreza taheri 5
1 Ph.D Student of Soil Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Associate Prof., Dept. of Soil Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Assistant Prof. of Genetic and Agicultural Biotechnology Institute of Tabarestan, Sari University Agricultural Sciences and Natural Resources, Sari, Iran.
4 Associate Prof., Dept. of Soil Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Post Doctoral Scholar, Max Planck Institute, Magdeburg, Germany.
چکیده [English]

Background and objectives: Drought, as an uncontrollable stress factor, impacts nearly all stages of plant growth, either directly or indirectly. The genus Streptomyces is one of the most well-known groups of actinobacteria, with a remarkable ability to thrive in both saline and arid soils, often found in association with plants native to dry and wet environments. Given this, the present study aims to evaluate exopolysaccharide production by actinombacteria isolates under both normal and drought conditions (induced by polyethylene glycol 6000), select the most effective isolate, and assess its impact on growth, physiology, yield indicators, and phosphorus and potassium concentrations in the tomato variety Y (Lycopersicon esculentum) under drought stress.
Materials and methods: In this study, the growth and exopolysaccharide production of five Actinobacteria isolates were evaluated under moisture levels of 0, -0.29, and -0.73 megapascals, at three incubation times (7, 14, and 25 days) under laboratory conditions. The superior isolate was selected for the pot experiment, and its growth-promoting properties, including phosphate solubility and indole acetic acid production, were assessed. The pot experiment was conducted as factorial design arranged in completely randomized design with three replications. The experimental factors included Streptomyces (inoculation Bs-47, no inoculation B0) and moisture levels: 80-90% available water (no stress, D0), 45-60% available water (moderate stress, D1), and 20-30% available water (severe stress, D2). After the plant growth period, growth parameters, physiological indicators, nutrient uptake, and tomato yield were evaluated.


Results: According to the results, isolate 47 recorded the highest production of exopolysaccharides under drought stress levels of -0.73, -0.29, and 0 megapascals, with respective amounts of 4.26, 6.18, and 8.5 grams per liter after 25 days of incubation. The analysis showed that the percentage of total carbohydrates increased with the incubation period and drought stress levels in Streptomyces isolate 47. However, in isolates 16 and 91, total carbohydrates decreased under severe stress at -0.73 megapascals with increasing incubation time. Sequencing results of the selected isolate 47, which exhibited desirable exopolysaccharide production and growth-promoting characteristics, indicated the highest homology with Streptomyces chartreusis, and it was registered in the NCBI database under accession number KJ152149. Infrared spectrum analysis of the exopolysaccharide produced by the superior Streptomyces isolate showed a diverse pattern of absorption peaks ranging from 3450 to 820 cm⁻¹, confirming the polysaccharide nature and strong intermolecular and intramolecular interactions within the exopolysaccharide chains. Drought stress led to a reduction in growth characteristics, physiological traits, and phosphorus and potassium concentrations, while increasing leaf proline levels and antioxidant enzyme activity in the plant. Greenhouse monitoring results showed that under relatively severe stress (45-60% of available water), inoculation with Streptomyces increased aerial biomass (by 35.4%), root biomass (by 30.7%), stem diameter (by 30.6%), chlorophyll index (by 12.3%), relative water content of leaves (by 6.68%), phosphorus concentration (by 19.04%), potassium concentration (by 28.23%), and yield (by 155.3%) compared to the control (without inoculation). Inoculation with Streptomyces under relatively severe and severe stress showed a reduction in catalase enzyme activity by 19.4% and 16.6%, and in superoxide dismutase enzyme activity by 12.5% and 11.6%, compared to the control (non-stress conditions).
Conclusion:The results indicate that inoculation with Streptomyces, possessing desirable traits such as exopolysaccharide production and other growth-promoting characteristics, creates favorable conditions for the plant. By enhancing water retention and improving nutrient uptake in the root environment, it

کلیدواژه‌ها [English]

  • Actionbacterium
  • abiotic stress
  • antioxidant enzyme
1.Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7 (3), 975-992.
2.Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature climate change, 6 (2), 166-171.
3.Hone, H., Mann, R., Yang, G., Kaur, J., Tannenbaum, I., Li, T., & Sawbridge, T. (2021). Profiling, isolation and characterisation of beneficial microbes from the seed microbiomes of drought tolerant wheat. Scientific Reports, 11 (1), 11916.
4.Hu, Y., Xie, G., Jiang, X., Shao, K., Tang, X., & Gao, G. (2020). The relationships between the free-living and particle-attached bacterial communities in response to elevated eutrophication. Frontiers in Microbiology, 11, 504658.
5.Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10 (6), 520.
6.Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R. Z., & Curá, J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells, 10(6), 1551.
7.Liu, Y., Liu, D., Zhang, H., Gao, H., Guo, X., Wang, D., & Zhang, A. (2007). The α-and β-expansin and xyloglucan endotransglucosylase/hydrolase gene families of wheat: Molecular cloning, gene expression, and EST data mining. Genomics, 90 (4), 516-529.
8.Moretti, C. L., Mattos, L. M., Calbo, A. G., & Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43 (7), 1824-1832.
9.Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., & Ullah, A. (2021). Drought tolerance strategies in plants: a mechanistic approach. Journal of Plant Growth Regulation, 40, 926-944.
10.Mustafa, S., Kabir, S., Shabbir, U., & Batool, R. (2019). Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis, 78, 115-123.
11.Mishra, J., Singh, R., & Arora, N. K. (2017). Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. Probiotics and plant health, 71-111.
12.Yu, L., Xu, S., Deng, C., Li, H., Yang, Q., Xu, Z., & Chen, J. (2016). Preparation and partial structural characterization of the exopolysaccharide from Bacillus mucilaginosus SM-01. Carbohydrate polymers, 146, 217-223.
13.Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F., & Zitouni, A. (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiology and Biotechnology, 29, 1821-1829.
14.Ghorbani Nasrabadi, R., Greiner, R., Mayer-miebach, E., & Menezes-Blackburn, D. (2023). Phosphate solubilizing and phytate degrading Streptomyces isolates stimulate the growth and P accumulation of maize (Zea mays) fertilized with different phosphorus sources. Geomicrobiology Journal, 40 (4), 325-336.
15.Anwar, S., Ali, B., & Sajid, I. (2016). Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Frontiers in microbiology, 7, 203732.
16.Dahal, B., NandaKafle, G., Perkins, L., & Brözel, V. S. (2017). Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiological Research, 195, 31-39.
17.Mohammadipanah, F., & Wink, J. (2016). Actinobacteria from arid and desert habitats: diversity and biological activity. Frontiers in microbiology, 6, 1541.
18.Sadeghi, A., Karimi, E., Dahaji, P. A., Javid, M. G., Dalvand, Y., & Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28, 1503-1509.
19.Karimi, E., Sadeghi, A., Abbaszadeh Dahaji, P., Dalvand, Y., Omidvari, M., & Kakuei Nezhad, M. (2012). Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol science and technology, 22 (3), 333-349.
20.Palaniyandi, S. A., Damodharan, K., Yang, S. H., & Suh, J. W. (2014). Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’tomato plants. Journal of applied microbiology, 117 (3), 766-773.
21.Cherni, M., Ferjani, R., Mapelli, F., Boudabous, A., Borin, S., & Ouzari, H. I. (2019). Soil parameters drive the diversity of Citrus sinensis rhizosphere microbiota which exhibits a potential in plant drought stress alleviation. Applied soil ecology, 135, 182-193.
22.El-Tarabily, K. A. (2008). Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and soil,  308, 161-174.
23.Manivasagan, P., Sivasankar, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Production and characterization of an extracellular polysaccharide from Streptomyces violaceus MM72. International journal of biological macromolecules. 59, 29-38.
24.DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28 (3), 350-356.
25.Vinothini, G., Latha, S., Arulmozhi, M., & Dhanasekaran, D. (2019). Statistical optimization, physio-chemical and bio-functional attributes of a novel exopolysaccharide from probiotic Streptomyces griseorubens GD5. International journal of biological macromolecules, 134, 575-587.
26.Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current microbiology, 43, 51-56.
27.Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30 (1), 105-111.
28.Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1), 205-207.
29.Siminis, C. I., Kanellis, A. K., & Roubelakis-Angelakis, K. A. (1994). Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiology, 105 (4), 1375-1383.
30.Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W., & Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.
31.Vardharajula, S. (2014). Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation
under drought stress. The Journal of Microbiology, Biotechnology and Food Sciences, 4 (1), 51.
32.Li, W., Ji, J., Rui, X., Yu, J., Tang, W., Chen, X., & Dong, M. (2014). Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT-Food Science and Technology, 59 (2), 732-739.
33.Imran, M. Y. M., Reehana, N., Jayaraj, K. A., Ahamed, A. A. P., Dhanasekaran, D., Thajuddin, N., & Muralitharan, G. (2016). Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules, 93, 731-745.
34.Sathiyanarayanan, G., Yi, D. H., Bhatia, S. K., Kim, J. H., Seo, H. M., Kim, Y. G., & Yang, Y. H. (2015). Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC advances,
5 (103), 84492-84502.
35.Vandana, U. K., Singha, B., Gulzar, A. B. M., & Mazumder, P. B. (2020). Molecular mechanisms in plant growth promoting bacteria (PGPR) to resist environmental stress in plants. In Molecular aspects of plant beneficial microbes in agriculture (pp. 221-233). Academic Press.
36.Singh, P. K., Indoliya, Y., Agrawal, L., Awasthi, S., Deeba, F., Dwivedi, S., & Tripathi, R. D. (2022). Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. Current Plant Biology, 29, 100239.
37.Turan, M., Ekinci, M., Argin, S., Brinza, M., & Yildirim, E. (2023). Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Frontiers in Plant Science, 14, 1211210.
38.Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26 (1), 1-20.
39.Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role
in plant growth and drought tolerance. Journal of basic microbiology,
58 (12), 1009-1022.
40.Zhang, F., Zhu, K., Wang, Y. Q., Zhang, Z. P., Lu, F., Yu, H. Q., & Zou, J. Q. (2019). Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica,
57 (4).
41.Ghotbi‐Ravandi, A. A., Shahbazi, M., Shariati, M., & Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200 (6), 403-415.
42.Tahir, M., Khalid, U., Khan, M. B., Shahid, M., Ahmad, I., Akram, M., & Ahmad, N. (2019). Auxin and 1-aminocyclopropane- 1- carboxylate deaminase activity exhibiting rhizobacteria improved maize quality and productivity under drought conditions.
43.Andryei, B., Horváth, K. Z., Agyemang Duah, S., Takács, S., Égei, M., Szuvandzsiev, P., & Neményi, A. (2021). Use of plant growth promoting rhizobacteria (PGPRs) in the mitigation of water deficiency of tomato plants (Solanum lycopersicum L.). Journal of Central European Agriculture, 22 (1), 167-177.
44.Dar, A., Zahir, Z. A., Iqbal, M., Mehmood, A., Javed, A., Hussain, A., & Ahmad, M. (2021). Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environmental Monitoring and Assessment, 193, 1-15.
45.Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59 (2), 206-216.
46.Li, H., Guo, Q., Jing, Y., Liu, Z., Zheng, Z., Sun, Y., & Lai, H. (2020). Application of Streptomyces pactum Act12 enhances drought resistance in wheat. Journal of Plant Growth Regulation, 39, 122-132.
47.Ullah, U., Ashraf, M., Shahzad, S. M., Siddiqui, A. R., Piracha, M. A., & Suleman, M. (2016). Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ, 35(1), 65-75.
48.Gowtham, H. G., Singh, B., Murali, M., Shilpa, N., Prasad, M., Aiyaz, M., & Niranjana, S. R. (2020). Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research, 234, 126422.
49.Herbette, S., de Labrouhe, D. T., Drevet, J. R., & Roeckel-Drevet, P. (2011). Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Science, 180 (3), 548-553.
50.Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48 (12), 909-930.
51.Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24 (1), 23-58.
52.Tallapragada, P., Dikshit, R., & Seshagiri, S. (2016). Influence of Rhizophagus spp. and Burkholderia seminalis on the growth of tomato (Lycopersicon esculatum) and bell pepper (Capsicum annuum) under drought stress. Communications in Soil Science and Plant Analysis, 47 (17), 1975-1984.
53.Abbasi, S., & Zahedi, H. (2013). Effect of plant growth promoting rhizobacteria (PGPR) on antioxidative enzymes of soybean subjected to different irrigation regimes. Res Crops, 14, 189-193.
54.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological research, 184, 13-24.
55.Hepper, C. M. (1975). Extracellular polysaccharides of soil bacteria.. In: Walker N, editor. Soil Microbiology. New York: Wiley; 1975. pp. 93-111.
56.Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188.
57.Sandhya, V. S. K. Z., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant growth regulation, 62, 21-30.
58.Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant physiology, 164 (4), 1636-1648.
59.Abdelaal, K. A., Attia, K. A., Alamery, S. F., El-Afry, M. M., Ghazy, A. I., Tantawy, D. S., & Hafez, Y. M. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12 (5), 1736.
60.Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants, 7 (2), 28.
61.Nussaume, L., & Kanno, S. (2024). Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants. Journal of Plant Research, 137 (3), 297-306.
62.Bahrami-Rad, S., & Hajiboland, R. (2017). Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: Comparison of root with foliar application. Annals of Agricultural Sciences, 62 (2), 121-130.
63.Munsif, F., Shah, T., Arif, M., Jehangir, M., Afridi, M. Z., Ahmad, I., & Alansi, S. (2022). Combined effect of salicylic acid and potassium mitigates drought stress through the modulation of physio-biochemical attributes and key antioxidants in wheat. Saudi Journal of Biological Sciences, 29 (6), 103294.
64.Kochian, L. V. (2012). Rooting for more phosphorus. Nature, 488 (7412), 466-467.
65.Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research, 163 (2), 173-181.
66.Mishra, B. K., Dubey, P. N., Aishwath, O. P., Kant, K. R. I. S. H. N. A., Sharma, Y. K., & Vishal, M. K. (2017). Effect of plant growth promoting rhizobacteria on coriander (Coriandrum sativum) growth and yield under semi-arid condition of India. Indian J. Agric. Sci. 87 (5), 607-612.
67.Muthuraja, R., Muthukumar, T., & Natthapol, C. (2023). Drought tolerance of Aspergillus violaceofuscus and Bacillus licheniformis and their influence on tomato growth and potassium uptake in mica amended tropical soils under water-limiting conditions. Frontiers in Plant Science, 14, 1114288.
68.Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved phosphorus uptake by wheat plant (Triticum aestivum L.) with rhizosphere fluorescent pseudomonads strains under water-deficit stress. Journal of Plant Growth Regulation, 40, 162-178.
69.Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90, 123-136.
70.Shintu, P. V., & Jayaram, K. M. (2015). Phosphate solubilising bacteria (Bacillus polymyxa)-An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Trop. Plant Res, 2 (1), 2349-9265.