1.Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7 (3), 975-992.
2.Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature climate change, 6 (2), 166-171.
3.Hone, H., Mann, R., Yang, G., Kaur, J., Tannenbaum, I., Li, T., & Sawbridge, T. (2021). Profiling, isolation and characterisation of beneficial microbes from the seed microbiomes of drought tolerant wheat. Scientific Reports, 11 (1), 11916.
4.Hu, Y., Xie, G., Jiang, X., Shao, K., Tang, X., & Gao, G. (2020). The relationships between the free-living and particle-attached bacterial communities in response to elevated eutrophication. Frontiers in Microbiology, 11, 504658.
5.Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10 (6), 520.
6.Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R. Z., & Curá, J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells, 10(6), 1551.
7.Liu, Y., Liu, D., Zhang, H., Gao, H., Guo, X., Wang, D., & Zhang, A. (2007). The α-and β-expansin and xyloglucan endotransglucosylase/hydrolase gene families of wheat: Molecular cloning, gene expression, and EST data mining. Genomics, 90 (4), 516-529.
8.Moretti, C. L., Mattos, L. M., Calbo, A. G., & Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43 (7), 1824-1832.
9.Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., & Ullah, A. (2021). Drought tolerance strategies in plants: a mechanistic approach. Journal of Plant Growth Regulation, 40, 926-944.
10.Mustafa, S., Kabir, S., Shabbir, U., & Batool, R. (2019). Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis, 78, 115-123.
11.Mishra, J., Singh, R., & Arora, N. K. (2017). Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. Probiotics and plant health, 71-111.
12.Yu, L., Xu, S., Deng, C., Li, H., Yang, Q., Xu, Z., & Chen, J. (2016). Preparation and partial structural characterization of the exopolysaccharide from Bacillus mucilaginosus SM-01. Carbohydrate polymers, 146, 217-223.
13.Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F., & Zitouni, A. (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiology and Biotechnology, 29, 1821-1829.
14.Ghorbani Nasrabadi, R., Greiner, R., Mayer-miebach, E., & Menezes-Blackburn, D. (2023). Phosphate solubilizing and phytate degrading Streptomyces isolates stimulate the growth and P accumulation of maize (Zea mays) fertilized with different phosphorus sources. Geomicrobiology Journal, 40 (4), 325-336.
15.Anwar, S., Ali, B., & Sajid, I. (2016). Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Frontiers in microbiology, 7, 203732.
16.Dahal, B., NandaKafle, G., Perkins, L., & Brözel, V. S. (2017). Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiological Research, 195, 31-39.
17.Mohammadipanah, F., & Wink, J. (2016). Actinobacteria from arid and desert habitats: diversity and biological activity. Frontiers in microbiology, 6, 1541.
18.Sadeghi, A., Karimi, E., Dahaji, P. A., Javid, M. G., Dalvand, Y., & Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28, 1503-1509.
19.Karimi, E., Sadeghi, A., Abbaszadeh Dahaji, P., Dalvand, Y., Omidvari, M., & Kakuei Nezhad, M. (2012). Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol science and technology, 22 (3), 333-349.
20.Palaniyandi, S. A., Damodharan, K., Yang, S. H., & Suh, J. W. (2014). Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’tomato plants. Journal of applied microbiology, 117 (3), 766-773.
21.Cherni, M., Ferjani, R., Mapelli, F., Boudabous, A., Borin, S., & Ouzari, H. I. (2019). Soil parameters drive the diversity of Citrus sinensis rhizosphere microbiota which exhibits a potential in plant drought stress alleviation. Applied soil ecology, 135, 182-193.
22.El-Tarabily, K. A. (2008). Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and soil, 308, 161-174.
23.Manivasagan, P., Sivasankar, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Production and characterization of an extracellular polysaccharide from Streptomyces violaceus MM72. International journal of biological macromolecules. 59, 29-38.
24.DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28 (3), 350-356.
25.Vinothini, G., Latha, S., Arulmozhi, M., & Dhanasekaran, D. (2019). Statistical optimization, physio-chemical and bio-functional attributes of a novel exopolysaccharide from probiotic Streptomyces griseorubens GD5. International journal of biological macromolecules, 134, 575-587.
26.Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current microbiology, 43, 51-56.
27.Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30 (1), 105-111.
28.Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1), 205-207.
29.Siminis, C. I., Kanellis, A. K., & Roubelakis-Angelakis, K. A. (1994). Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiology, 105 (4), 1375-1383.
30.Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W., & Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.
31.Vardharajula, S. (2014). Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation
under drought stress. The Journal of Microbiology, Biotechnology and Food Sciences, 4 (1), 51.
32.Li, W., Ji, J., Rui, X., Yu, J., Tang, W., Chen, X., & Dong, M. (2014). Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT-Food Science and Technology, 59 (2), 732-739.
33.Imran, M. Y. M., Reehana, N., Jayaraj, K. A., Ahamed, A. A. P., Dhanasekaran, D., Thajuddin, N., & Muralitharan, G. (2016). Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules, 93, 731-745.
34.Sathiyanarayanan, G., Yi, D. H., Bhatia, S. K., Kim, J. H., Seo, H. M., Kim, Y. G., & Yang, Y. H. (2015). Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC advances,
5 (103), 84492-84502.
35.Vandana, U. K., Singha, B., Gulzar, A. B. M., & Mazumder, P. B. (2020). Molecular mechanisms in plant growth promoting bacteria (PGPR) to resist environmental stress in plants. In Molecular aspects of plant beneficial microbes in agriculture (pp. 221-233). Academic Press.
36.Singh, P. K., Indoliya, Y., Agrawal, L., Awasthi, S., Deeba, F., Dwivedi, S., & Tripathi, R. D. (2022). Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. Current Plant Biology, 29, 100239.
37.Turan, M., Ekinci, M., Argin, S., Brinza, M., & Yildirim, E. (2023). Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Frontiers in Plant Science, 14, 1211210.
38.Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26 (1), 1-20.
39.Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role
in plant growth and drought tolerance. Journal of basic microbiology,
58 (12), 1009-1022.
40.Zhang, F., Zhu, K., Wang, Y. Q., Zhang, Z. P., Lu, F., Yu, H. Q., & Zou, J. Q. (2019). Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica,
57 (4).
41.Ghotbi‐Ravandi, A. A., Shahbazi, M., Shariati, M., & Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200 (6), 403-415.
42.Tahir, M., Khalid, U., Khan, M. B., Shahid, M., Ahmad, I., Akram, M., & Ahmad, N. (2019). Auxin and 1-aminocyclopropane- 1- carboxylate deaminase activity exhibiting rhizobacteria improved maize quality and productivity under drought conditions.
43.Andryei, B., Horváth, K. Z., Agyemang Duah, S., Takács, S., Égei, M., Szuvandzsiev, P., & Neményi, A. (2021). Use of plant growth promoting rhizobacteria (PGPRs) in the mitigation of water deficiency of tomato plants (Solanum lycopersicum L.). Journal of Central European Agriculture, 22 (1), 167-177.
44.Dar, A., Zahir, Z. A., Iqbal, M., Mehmood, A., Javed, A., Hussain, A., & Ahmad, M. (2021). Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environmental Monitoring and Assessment, 193, 1-15.
45.Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59 (2), 206-216.
46.Li, H., Guo, Q., Jing, Y., Liu, Z., Zheng, Z., Sun, Y., & Lai, H. (2020). Application of Streptomyces pactum Act12 enhances drought resistance in wheat. Journal of Plant Growth Regulation, 39, 122-132.
47.Ullah, U., Ashraf, M., Shahzad, S. M., Siddiqui, A. R., Piracha, M. A., & Suleman, M. (2016). Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ, 35(1), 65-75.
48.Gowtham, H. G., Singh, B., Murali, M., Shilpa, N., Prasad, M., Aiyaz, M., & Niranjana, S. R. (2020). Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research, 234, 126422.
49.Herbette, S., de Labrouhe, D. T., Drevet, J. R., & Roeckel-Drevet, P. (2011). Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Science, 180 (3), 548-553.
50.Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48 (12), 909-930.
51.Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24 (1), 23-58.
52.Tallapragada, P., Dikshit, R., & Seshagiri, S. (2016). Influence of Rhizophagus spp. and Burkholderia seminalis on the growth of tomato (Lycopersicon esculatum) and bell pepper (Capsicum annuum) under drought stress. Communications in Soil Science and Plant Analysis, 47 (17), 1975-1984.
53.Abbasi, S., & Zahedi, H. (2013). Effect of plant growth promoting rhizobacteria (PGPR) on antioxidative enzymes of soybean subjected to different irrigation regimes. Res Crops, 14, 189-193.
54.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological research, 184, 13-24.
55.Hepper, C. M. (1975). Extracellular polysaccharides of soil bacteria.. In: Walker N, editor. Soil Microbiology. New York: Wiley; 1975. pp. 93-111.
56.Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188.
57.Sandhya, V. S. K. Z., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant growth regulation, 62, 21-30.
58.Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant physiology, 164 (4), 1636-1648.
59.Abdelaal, K. A., Attia, K. A., Alamery, S. F., El-Afry, M. M., Ghazy, A. I., Tantawy, D. S., & Hafez, Y. M. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12 (5), 1736.
60.Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants, 7 (2), 28.
61.Nussaume, L., & Kanno, S. (2024). Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants. Journal of Plant Research, 137 (3), 297-306.
62.Bahrami-Rad, S., & Hajiboland, R. (2017). Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: Comparison of root with foliar application. Annals of Agricultural Sciences, 62 (2), 121-130.
63.Munsif, F., Shah, T., Arif, M., Jehangir, M., Afridi, M. Z., Ahmad, I., & Alansi, S. (2022). Combined effect of salicylic acid and potassium mitigates drought stress through the modulation of physio-biochemical attributes and key antioxidants in wheat. Saudi Journal of Biological Sciences, 29 (6), 103294.
64.Kochian, L. V. (2012). Rooting for more phosphorus. Nature, 488 (7412), 466-467.
65.Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research, 163 (2), 173-181.
66.Mishra, B. K., Dubey, P. N., Aishwath, O. P., Kant, K. R. I. S. H. N. A., Sharma, Y. K., & Vishal, M. K. (2017). Effect of plant growth promoting rhizobacteria on coriander (Coriandrum sativum) growth and yield under semi-arid condition of India. Indian J. Agric. Sci. 87 (5), 607-612.
67.Muthuraja, R., Muthukumar, T., & Natthapol, C. (2023). Drought tolerance of Aspergillus violaceofuscus and Bacillus licheniformis and their influence on tomato growth and potassium uptake in mica amended tropical soils under water-limiting conditions. Frontiers in Plant Science, 14, 1114288.
68.Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved phosphorus uptake by wheat plant (Triticum aestivum L.) with rhizosphere fluorescent pseudomonads strains under water-deficit stress. Journal of Plant Growth Regulation, 40, 162-178.
69.Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90, 123-136.
70.Shintu, P. V., & Jayaram, K. M. (2015). Phosphate solubilising bacteria (Bacillus polymyxa)-An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Trop. Plant Res, 2 (1), 2349-9265.