ارائه الگویی مبتنی بر مدلسازی ریاضی و پویایی سیستم برای زنجیره تأمین امنیت آب شهری در استان گیلان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

2 نویسنده مسئول، استادیار گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

3 گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

چکیده

سابقه و هدف: تأمین امنیت آب شهری به مجموعه اقداماتی اطلاق می‌شود که به منظور حفظ و تضمین عرضه آب به شهرها و جوامع در یک رویکرد ایمن از نظر بهداشتی، کیفیتی و تامینی انجام می‌شود. امنیت آب شهری شامل مسائلی از قبیل تأمین آب به میزان کافی و پایدار، حفظ کیفیت آب، جلوگیری از آلودگی های مختلف، مدیریت منابع آب، حفاظت از تأمین آب در مواجهه با تهدیدهای طبیعی و انسانی، و تأمین آب در شرایط اضطراری و بحرانی می‌باشد. هدف نهایی تأمین امنیت آب شهری، بهبود کیفیت زندگی شهروندان و حفظ سلامتی عمومی است. بنابراین، کاهش و افزایش نوسانات در موجودی آب شرب شهری و تضمین تأمین امنیت آب برای جوامع شهری، مسئولیت‌های مهمی هستند که بر دوش سیستم‌های تأمین آب قرار دارند. استان گیلان، با مسائلی مانند نوسانات جوی متعددی روبرو است که اهمیت نامحدودی برای امنیت آب به وجود می آورد.
مواد و روش‌ها: در این مقاله با استفاده از روش‌های بهینه سازی یک الگو برای سیستم آبرسانی شهری در استان گیلان با استفاده از مدلسازی ریاضی و پویایی سیستم ارائه شده است. برای این منظور، یک مدل ترکیبی با استفاده از مدلسازی ریاضی، الگوریتم های فراابتکاری و رویکرد پویایی سیستم ارائه شده است. با استفاده از مدل ریاضی و الگوریتم فراابتکاری متغیرهای تصمیم که شامل میزان منابع آبی، میزان آب تصفیه شده در سیستم تصفیه آب، میزان هرزآب در ناحیه و میزان کمبود آب در ناحیه به همراه مقادیر توابع هدف که هدف اول مسئله حداقل کردن هزینه تامین آب می باشد که شامل هزینه انرژی، میزان مصرف انرژی، هزینه احداث سیستم تصفیه، هزینه مدیریت منابع آب، هزینه مدیریت سیستم تصفیه، هزینه انتقال منابع آب و هرزآب می باشد. همچنین، هدف دوم مسأله که دنبال حداقل ساختن کمبود آب برای کل سیستم می باشد. بدست آمده است. سپس، این مقادیر به عنوان مقادیر ورودی وارد مدل پویایی سیستم شده و به این وسیله میزان کمبود در دوره های آتی پیش بینی شده است.
یافته‌ها: پس از بررسی صحت و اعتبار مدل ارائه شده در سیستم آبرسانی شهری از منابع مختلف، نتایج حاصل شده حاکی از آن است که افزایش ظرفیت تصفیه و همچنین وجود منابع آبی در نواحی استان می تواند بر هزینه تصفیه و کاهش کمبود و هرزآب اثرگذار باشد. نتایج حاصل از پیش بینی میزان کمبود در دوره های آتی یک روند خطی را تا بیش از 520 هزار واحد نشان داد. ضمن اینکه تحلیل حساسیت های انجام شده نیز اثرگذاری معکوس پارامترهای ظرفیت و میزان آب ورودی و اثرگذاری مستقیم پارامترهای هزینه انتقال، میزان مصرف انرژی، هزینه مصرف تامین انرژی، هزینه تصفیه، هزینه منبع، هزینه احداث و تقاضا را نشان دادند. در میان پارامترهای با اثرگذاری مستقیم، هزینه مصرف انرژی، هزینه احداث و هزینه تصفیه دارای بیشترین اثرگذاری بر هزینه تأمین می باشند. همچنین، پارامتر هزینه تصفیه و تقاضا دارای بیشترین اثرگذاری بر کمبود و هرزآب در سیستم می باشند.
نتیجه‌گیری: نتایج این تحقیق اطلاعات مفیدی در خصوص پیش بینی کمبود آب شرب در اختیار مدیران شرکت آب و فاضلاب استان گیلان برای تأمین آب شرب شهری و همچنین سایر مصرف کنندگان اعم از خانگی، صنعتی و کشاورزی در تأمین آب شرب شهری در کلانشهر رشت ارائه می کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a mathematical modeling and system dynamics for the supply chain of urban water security in Guilan province

نویسندگان [English]

  • Tayebeh Heydari Kushalshah 1
  • Maryam Daneshmand-Mehr 2
  • Milad Abolghasemian 3
1 M.Sc. Graduate, Dept. of Industrial Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
2 Corresponding Author, Assistant Prof., Dept. of Industrial Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
3 Dept. of Industrial Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
چکیده [English]

Background and objectives: Ensuring urban water security refers to a set of measures that are carried out in order to maintain and guarantee the supply of water to cities and communities in a safe approach in terms of health, quality and supply. Urban water security includes issues such as sufficient and sustainable water supply, maintaining water quality, preventing various pollutions, managing water resources, protecting water supply in the face of natural and human threats, and providing water in emergency and critical situations. The ultimate goal is to provide urban water security, improve the quality of life of citizens and maintain public health. Therefore, reducing and increasing fluctuations in urban drinking water availability and ensuring water security for urban communities are important responsibilities that rest on the shoulders of water supply systems. Guilan province is facing issues such as numerous weather fluctuations, which creates unlimited importance for water security.
Materials and methods: In this paper, using optimization methods, a model for urban water supply system in Guilan province is presented using mathematical modeling and system dynamics. For this purpose, a hybrid model using mathematical modeling, meta-heuristic algorithms and system dynamics approach is presented. Using the mathematical model and meta-heuristic algorithm, the decision variables that include the amount of water resources, the amount of purified water in the water treatment system, the amount of waste water in the area and the amount of water shortage in the area along with the values of the objective functions, the first objective of which is to minimize the cost of water supply which includes the cost of energy, the amount of energy consumption, the cost of constructing a purification system, the cost of managing water resources, the cost of managing the purification system, the cost of transferring water resources and waste water. Also, the second goal of the problem is to minimize water shortage for the whole system. Then, these values are entered into the system dynamics model as input values and thus the amount of shortage in future periods is predicted.
Results: After checking the accuracy and validity of the model presented in the urban water supply system from different sources, the obtained results indicate that increasing the treatment capacity as well as the presence of water resources in the province can affect the cost of treatment and reducing the shortage and waste water. The results of predicting the amount of shortage in future periods showed a linear trend up to more than 520 thousand units. In addition, the sensitivity analysis also showed the inverse effect of the parameters of the capacity and amount of incoming water and the direct effect of the parameters of transmission cost, energy consumption, energy supply cost, treatment cost, source cost, construction cost and demand. Among the parameters with direct effect, energy consumption cost, construction cost and treatment cost have the most effect on supply cost. Also, the parameters of treatment cost and demand have the greatest effect on the shortage and waste water in the system.
Conclusion: The results of this research provide useful information regarding the prediction of drinking water shortage in the hands of the managers of water and sewerage company of Guilan province to provide urban drinking water as well as other consumers including domestic, industrial and agricultural in Rasht metropolis.

کلیدواژه‌ها [English]

  • Water resource management
  • Wastewater management
  • Water supply
  • System dynamics
  • Water security
1.Song, W., Liu, Y., Arowolo, A., Zhang, Y., & Xu, Q. (2018). Optimal water allocation scheme in integrated water-ecosystem-economy system. River Basin Management. Springer Press, Singapore.2.Tian, J., Guo, S., Liu, D., Pan, Z., & Hong, X. (2019). A fair approach for multi-objective water resources allocation. Water Resources Management, 33, 3633-3653.3.Parween, S., & Sinha, R. C. (2023). Identification of Indicators for Developing an Integrated Study on Urban Water Supply System, Planning, and Management. Journal of Environmental Engineering, 149 (3), 04022095.4.Nezami, N., Zarghami, M., Tizghadam, M., & Abbasi, M. (2022). A novel hybrid systemic modeling into sustainable dynamic urban water metabolism management: Case study. Sustainable Cities and Society, 85, 104065.5.Demirel, D. F., Gönül-Sezer, E. D., & Pehlivan, S. A. (2022). Analyzing the wastewater treatment facility location/network design problem via system dynamics: Antalya, Turkey case. Journal of Environmental Management, 320, 115814.6.Shiu, H. Y., Lee, M., Lin, Z. E., & Chiueh, P. T. (2023). Dynamic life cycle assessment for water treatment implications. Science of the Total Environment, 860, 160224.7.Heydari Kushalshah, T., Daneshmand-Mehr, M., & Abolghasemian, M. (2023). Hybrid modelling for urban water supply system management based on a bi-objective mathematical model and system dynamics: A case study in Guilan province. Journal of Industrial and Systems Engineering, 15 (1), 260-279.8.de Melo, M. C., Formiga-Johnsson, R. M., de Azevedo, J. P. S., de Oliveira Nascimento, N., Machado, F. L. V., Pacheco, F. A. L., & Fernandes, L. F. S. (2021). A raw water security risk model for urban supply based on failure mode analysis. Journal of Hydrology, 593, 125843.9.Golpîra, H., & Tirkolaee, E. B. (2019). Stable maintenance tasks scheduling: A bi-objective robust optimization model. Computers & Industrial Engineering, 137, 106007.10.Nepal, S., & Tran, L. T. (2019). Identifying trade-offs between socio-economic and environmental factors for bioenergy crop production: A case study from northern Kentucky. Renewable Energy, 142, 272–283.11.Tian, Y., Li, C., Yi, Y., Wang, X., Shu, A. (2020). Dynamic model of a sustainable water resources utilization system with coupled water quality and quantity in Tianjin city. Sustainability, 12 (10), 4254.12.Xu, Z., Yao, L., & Chen, X. (2020). Urban water supply system optimization and planning: Bi-objective optimization and system dynamics methods. Computers & Industrial Engineering, 142, 106373.13.Yu, Y., Zhao, R., Zhang, J., Yang, D., & Zhou, T. (2021). Multi-objective game theory optimization for balancing economic, social and ecological benefits in the Three Gorges Reservoir operation. Environmental Research Letters, 16 (8), 085007.14.Deng, L., Guo, S., Yin, J., Zeng, Y., & Chen, K. (2022). Multi-objective optimization of water resources allocation in Han River basin (China) integrating efficiency, equity and sustainability. Scientific Reports,
12 (1), 1-21.15.Gilani, H., Shobeiry, S., Kami, M. B., & Sahebi, H. (2022). A sustainable redesign model for the water/wastewater supply network: A water–energy nexus approach. Kybernetes, 52 (5), 1842-1860.16.Xu, Z. (2023). Water-climate change extended nexus contribution to social welfare and environment-related sustainable development goals in China. Environmental Science and Pollution Research, 30 (14), 40654-40669.17.Pirouz, B., & Khorram, E. (2016). A computational approach based on the ε-constraint method in multi-objective optimization problems. Advances and Applications in Statistics, 49 (6), 453.18.Abolghasemian, M., & Darabi, H. (2018). Simulation based optimization of haulage system of an open-pit mine: Meta modeling approach. Organizational resources management researchs, 8 (2), 1-17.19.Abolghasemian, M., Kanai, A. G., & Daneshmandmehr, M. (2020). A two-phase simulation-based optimization
of hauling system in open-pit mine. Iranian journal of management studies, 13 (4), 705-732.20.Abolghasemian, M., Kanafi, A. G., & Daneshmand-Mehr, M. (2022). Simulation‐ Based Multiobjective Optimization of Open‐Pit Mine Haulage System: A Modified‐NBI Method and Meta Modeling Approach. Complexity, 2022 (1), 3540736.21.Chobar, A. P., Adibi, M. A., & Kazemi, A. (2022). Multi-objective hub-spoke network design of perishable tourism products using combination machine learning and meta-heuristic algorithms. Environment, Development and Sustainability, 1-28.22.Ghasemi, P., & Abolghasemian, M. (2023). A Stackelberg game for closed-loop supply chains under uncertainty with genetic algorithm and gray wolf optimization. Supply Chain Analytics, 4, 100040.