تحلیل تاثیر تغییر اقلیم بر روند دماهای حدی در ایستگاه‌های ساحلی استان مازندران بر مبنای مدل های CMIP6

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی، گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 نویسنده مسئول، استادیار گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 دانشجوی دکتری بیولوژی، گروه میکروبیولوژی، دانشگاه ایالتی داکوتای جنوبی، داکوتای جنوبی، آمریکا.

چکیده

چکیده
سابقه و هدف: گرمایش جهانی موجب تغییر در فراسنج‌های دما و به تبع آن افزایش وقوع رویدادهای فرین از جمله سیل و خشکسالی می-شود که در اغلب موارد، از آب و هوای شدید حاصل می‌شوند؛ لذا مطالعه و بررسی تغییرات آینده مقادیر حدی پارامترهای هواشناسی و هیدرولوژیکی از جمله دما، بیشتر از مقدار میانگین یا میانه، حائز اهمیت می‌باشد. بنابراین، هدف از این پژوهش، بررسی اثرات تغییر اقلیم بر روند تغییرات فصلی دماهای حدی (مقادیر بسیار بالا و بسیار پایین) در ایستگاه‌های ساحلی استان مازندران بر مبنای مدل‌های CMIP6 و روش رگرسیون چندک می‌باشد.

مواد و روش‌ها: در این پژوهش، به منظور بررسی روند مقادیر حدی دما در استان مازندران برای دوره‌ی آینده از برونداد سری ششم مدل-های تغییر اقلیم (Coupled Model Intercomparison Project phase 6, CMIP6) استفاده گردید. برای این منظور از دو دسته داده شامل کمینه و بیشینه دمای 4 ایستگاه سینوپتیک اصلی استان شامل بابلسر، قراخیل، رامسر و نوشهر و نیز برونداد مدل NorESM2-MM از مدل‌های CMIP6 در دو دوره‌ی آینده‌ی نزدیک (2055-2026) و آینده‌ی دور (2100-2071) و برای سه سناریو خوش‌بینانه (SSP126)، حد متوسط (SSP245) و بدبینانه (SSP585) استفاده گردید. به منظور مقیاس‌کاهی داده‌های مدل در ایستگاه‌های هواشناسی مورد مطالعه، از روش‌های مختلف موجود در نرم افزار مقیاس‌کاهی CMhyd استفاده گردید و خروجی داده‌های دما برای روشی که از دقت بالاتری برخوردار بود، برای بررسی روند انتخاب گردید. در گام بعد، برای بررسی روند فصلی مقادیر حدی دما از روش رگرسیون چندک استفاده گردید و نتایج مورد تحلیل و بررسی قرار گرفت.

یافته‌ها: نتایج مقیاس‌‌کاهی با استفاده از روش‌های مختلف نشان داده است که روش Variance Scaling بهترین عملکرد را در بین روش-های موجود در CMhyd دارد. به طورکلی نتایج بیانگر بی‌هنجاری مثبت دما (افزایش دمای سالانه نسبت به دوره‌ی پایه در سناریوهای SSP126=1.3، SSP245=2.56 و SSP585=3.2 درجه سلسیوس( در استان مازندران در تمام ماه‌های سال تا پایان قرن بیست ‌و یکم است. شدت بی‌هنجاری در ماه‌های گرم بیشتر از ماه‌های سرد است .تحت سناریو خوش‌بینانه، مقادیر حدی متغیرهای دما در فصل‌های بهار و پاییز در آینده‌ی دور، حداکثر تا 1 درجه در هر دهه کاهش خواهد یافت. با این‌حال، میانگین‌ کمینه دما در همه سناریوها (از جمله سناریو خوش‌بینانه) افزایشی است و کاهش صرفاً برای مقادیر حدی پیش‌نگری شده است. اما تحت سناریوهای حد متوسط و بدبینانه، افزایش مقادیر حدی دما در تمامی فصل‌ها وجود خواهد داشت که شدت آن برای سناریو بدبینانه و در فصل بهار (15/0 درجه سانتیگراد در سال) بیشتر خواهد بود.

نتیجه گیری: با توجه به نتایج می‌توان بیان کرد افزایش قابل ملاحظه دماهای حدی در شبانه روز خصوصا در ماه‌های گرم سال، باعث افزایش تبخیر و تعرق خواهد شد و در کنار کاهش بارندگی در ماه‌های گرم، باعث کاهش منابع آب در بخش‌های مختلف استان مازندران و فشار به آب‌های زیرزمینی می‌شود. بنابراین، تدوین و اجرای برنامه‌های مدیریتی مناسب در جهت نیاز هر منطقه، به منظور سازگاری با دماهای حدی و عواقب سوء آن، اهمیت بسیار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the effect of climate change on the trend of extreme temperatures along the coast of Mazandaran province based on CMIP6 models

نویسندگان [English]

  • Sedigheh Bararkhanpour 1
  • Mehdi Nadi 2
  • Sara Mazloom Babanari 1
  • Abbas Jedariforoughi 3
1 Ph.D. Student of Agrometeorology, Dept. of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Corresponding Author, Assistant Prof., Dept. of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Ph.D. Student of Biology, Dept. of Microbiology, South Dakota State University, South Dakota, USA.
چکیده [English]

Abstract
Background and objectives: Global warming cause changes in temperature variables and consequently increase in the occurrence of extreme events like as floods and droughts, result from extreme weather in most cases; Therefore, it is important to study and investigate the future changes of extreme values of meteorological and hydrological parameters, including temperature, more than the average or median value. Therefore, the purpose of this research is to investigate the effects of climate change on the trend of seasonal changes in extreme temperatures (very high and very low values) in coastal stations of Mazandaran province based on CMIP6 models and quantile regression method.
Materials and methods: In this research, in order to investigate the trend of extreme values of temperature in Mazandaran province for the future periods, the output of the sixth generation of climate change models (Coupled Model Intercomparison Project phase 6, CMIP6) was used. For this purpose, minimum and maximum temperature of 4 main synoptic stations of the province, including Babolsar, Qarakhil, Ramsar and Nowshahr, and also the output of the NorESM2-MM climate model from the CMIP6 in near future (2026-2055) and far future (2071-2100) at three optimistic (SSP126), moderate (SSP245) and pessimistic (SSP585) scenarios was used. In order to downscaling climate model data at the studied meteorological stations, various methods in the CMhyd downscaling software were used, and the Temperature data output for the method that had higher accuracy, was selected to analysis of trend. In the next step, the quantile regression method was used to investigate the seasonal trend of temperature extreme values and the results were analyzed.
Results: The results of downscaling using different methods have shown that the Variance Scaling method has the best performance among the available methods in CMhyd. In general, the results show a positive temperature anomaly (annual temperature increase compared to the base period in SSP126=1.3, SSP245=2.56, SSP585=3.2 oC) in Mazandaran province in all months of the year until the end of the 21st century. The intensity of the anomalies is higher in the warm months than in the cold ones. Under the optimistic scenario, the extreme values of the temperature variables in the spring and autumn seasons will decrease by a maximum of 1 degree per decade in the distant future. However, the average minimum temperature is increasing in all scenarios (including the optimistic scenario) and the decrease is only predicted for extreme values. But under the average and pessimistic scenarios, there will be an increase in the temperature extreme values in all seasons, so that its intensity will be greater for the pessimistic scenario and in the spring season (0.15 oC per year).
Conclusion: According to the results, it concluded that the significant increase in extreme temperature during the day and night, especially in the warm months of the year, will increase evapotranspiration, and along with the decrease in rainfall in the hot months, it will cause a decrease in water resources in different parts of Mazandaran province and pressure on the groundwater. Therefore, it is very important to formulate and implement appropriate management programs according to the needs of each region, in order to adapt to extreme temperatures and their adverse consequences.

کلیدواژه‌ها [English]

  • Temperature
  • CMIP6 models
  • SSP scenarios
  • Trend
  • Quantile regression
1.Philip, S. Y., Kew, S. F., Hauser, M., Guillod, B. P., Teuling, A. J., Whan, K., Uhe, P., & Oldenborgh, G. J. (2018). Western US high June 2015 temperatures and their relation to global warming and soil moisture. Climate Dynamics, 50, 2587-2601.
2.Cai, W., Ng, B., Wang, G., Santoso, A., Wu, L., & Yang, K. (2022). Increased ENSO Sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 12 (3), 228-231. ‏
3.Mansouri Daneshvar, M. R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environmental Systems Research, 8 (1), 1-10. ‏
4.Sharafi, S., & Mir Karim, N. (2020). Investigating trend changes of annual mean temperature and precipitation in Iran. Arabian Journal of Geosciences, 13, 1-11.
5.Zare, M., Bejestan, M. S., Adib, A., & Beygipoor, G. (2022). Analysis of Future Precipitation and Temperature Change and Its Implication on Doroodzan
Dam, Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47 (2), 1139-1151.
6.IPCC. (2007). Climate Change 2007. Cambridge University Press, New York.
7.Sun, S. K., Wang, Y. B., Liu, J., Cai, H. J., Wu, P. T., Xu, L. J., & Geng, Q. L. (2016). Sustainability assessment of regional water resources under the DPSIR framework. Journal of Hydrology, 532, 140-148.
8.Roshani, A., & Hamidi, M. (2022). Forecasting the effects of climate change scenarios on temperature & precipitation based on CMIP6 models (Case study: Sari station). Water and Irrigation Management, 11 (4), 781-795. [In Persian]
9.Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of
the American Meteorological Society
, 93, 485-498.
10.Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization: Geoscientific Model Development, 9 (5), 1937-1958.
11.Yang, Y., Bai, L., Wang, B., Wu, J., & Fu, S. (2019). Reliability of the global climate models during 1961–1999 in arid and semiarid regions of China. Science of the Total Environment, 667, 271-286.
12.Warnatzsch, E. A., & Reay, D. S. (2019). Temperature and precipitation change in Malawi: evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning. Science of the Total Environment, 654, 378-392.
13.Song, S., Zhang, X., & Yan, X. (2022). Evaluation of the Performance of CMIP6 Model Simulations for the Asian-Pacific Region: Perspectives from Multiple Dimensions.‏ https://doi.org/ 10.21203/rs.3.rs-1271963/v1.
14.Ayugi, B., Zhihong, J., Zhu, H., Ngoma, H., Babaousmail, H., Rizwan, K., & Dike, V. (2021). Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. International Journal of Climatology, 41 (15), 6474-6496. ‏
15.Agyekum, J., Annor, T., Quansah, E., Lamptey, B., Amekudzi, L. K., & Nyarko, B. K. (2022). Extreme temperature indices over the Volta Basin: CMIP6 model evaluation. Climate Dynamics, 1-26. ‏
16.Soltani, F., Javadi, S., Roozbahani, A., Massah Bavani, A. R., Golmohammadi, G., Berndtsson, R., ... & Maghsoudi, R. (2023). Assessing Climate Change Impact on Water Balance Components Using Integrated Groundwater–Surface Water Models (Case Study: Shazand Plain, Iran). Water, 15 (4), 813. ‏
17.Feyissa, T. A., Demissie, T. A., Saathoff, F., & Gebissa, A. (2023). Evaluation of General Circulation Models CMIP6 Performance and Future Climate Change over the Omo River Basin, Ethiopia. Sustainability, 15 (8), 6507.
‏18.Rezayi Zaman, M., Massah Bavani, A. R., & Javadi, S. (2023). Evaluation of the effects of SSP scenarios of Coupled Model Intercomparison Project Phase 6 (CMIP6) on water resources and agricultural crop in Hashtgerd region with the approach of applying an adaptation strategy. Journal of Environmental Science and Technology, 24 (12), 93-107. doi: 10.30495/jest. 2023.65251.5606.
19.Zarrin, A., Dadashi-Rodbari, A., & Salehabadi, N. (2021). Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6. Iranian Journal of Geophysics, 15 (1), 35-54. doi: 10.30499/ijg.2020. 249997.1292.
20.Niazkar, M., Goodarzi, M. R., Fatehifar, A., & Abedi, M. J. (2023). Machine learning-based downscaling: application of multi-gene genetic programming for downscaling daily temperature at Dogonbadan, Iran, under CMIP6 scenarios. Theoretical and Applied Climatology, 151 (1), 153-168.
‏21.Asadollah, S. B. H. S., Sharafati, A., & Shahid, S. (2022). Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran. Environmental Science and Pollution Research, 1-20. ‏
22.Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S., Manton, M. J., Ahmed, A. U., Baidya, S. K., Borgaonkar, H. P., Islam, N., Jayasinghearachchi, D., Kothawale, D. R., Premalal, K. H. M. S., Revadekar, J. V., & Shrestha, M. L. (2015). Trends in extreme daily rainfall and temperature indices over South Asia. International Journal of Climatology, 35, 1625-1637.
23.Tayebiyan, A., Mohammad, T. A., Malakotian, M., Nasiri, A., Heidari, M. A., & Yazdanpanah, Gh. (2019). Potential impact of global warming on river runoff coming to Jor reservoir, Malaysia by integration of LARSWG with artificial neural network. Environmental Health Engineering and Management Journal, 6 (2), 130-149.
24.Shagega, F. P., Munishi, S. E., & Kongo, V. M. (2020). Assessment of potential impacts of climate change on water resources in Ngerengere catchment, Tanzania. Physics and Chemistry of the Earth, 116, 10284.
25.Doulabian, S., Golian, S., Toosi, A. S., & Murphy, C. (2021). Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. Journal of Water and Climate Change, 12 (1), 166-184. ‏
26.Moghim, S., Teuling, A. J., & Uijlenhoet, R. (2022). A probabilistic climate change assessment for Europe. International Journal of Climatology, 13 (42), 6699-6715. ‏
27.Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
28.Mondiana, Y. Q., Zairina, A., & Sari, R. K. (2021). Quantile regression modeling to predict extreme precipitation. Journal of Physics: Conference Series. 1918 (4), 042031.
29.Zhang, S., Gan, T. Y., & Bush, A. B. (2020). Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. Journal of Climate, 33 (10), 4009-4025.
30.Vantas, K., Sidiropoulos, E., & Loukas, A. (2020). Estimating current and future rainfall erosivity in Greece using regional climate models and spatial quantile regression forests. Water, 12 (3), 687. ‏
31.Haupt, H., & Fritsch, M. (2022). Quantile trend regression and its application to central England temperature. Mathematics, 10 (3), 413. ‏
32.Han, B., Wang, Y., Zhang, R., Yang, W., Ma, Z., Geng, W., & Bai, Z. (2019). Comparative statistical models for estimating potential roles of relative humidity and temperature on the concentrations of secondary inorganic aerosol: Statistical insights on air pollution episodes at Beijing during January 2013. Atmospheric Environment, 212, 11-21. ‏
33.Solaimani, K., & Bararkhanpour, S. (2022). Spatiotemporal changes of climatic parameters extreme quantiles and their role on evaporation in N. Iran (Golestan province). Arabian Journal of Geosciences, 15 (68), 1-16.
34.Mahdavi, S., Almasi, M., & Soheili, Q. (2019). Investigating the Differences in CO2 Emission in the Transport Sector Across Iranian Provinces: Evidence from a Quantile Regression Model. QEER, 15 (62), 131-154.
35.McKinnon, K. A., & Poppick, A. (2020). Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. Journal of Agricultural, Biological and Environmental Statistics, 25, 292-314.
36.Fathian, F., Amini, M., & Vaheddoost, B. (2021). A quantile-based realization of the indirect-link between large-scale atmospheric oscillation and lake water level. Arabian Journal of Geosciences, 14 (24), 1-14.‏
37.Solaimani, K., & Bararkhanpour, S. (2022). Spatiotemporal changes of climatic parameters extreme quantiles and their role on evaporation in N. Iran (Golestan province). Arabian Journal of Geosciences, 15 (68), 1-16.
38.Haupt, H., & Fritsch, M. (2022). Quantile trend regression and its application to central England temperature. Mathematics, 10 (3), 413.
39.Kousali, M., Salarijazi, M., & Ghorbani, K. (2022). Estimation of non-stationary behavior in annual and seasonal surface freshwater volume discharged into the Gorgan Bay, Iran. Natural Resources Research, 31 (2), 835-847.
40.Bararkhanpour Ahmadi, S., Gholami Sefidkouhi, M. A., & Khoshravesh, M. (2023). Investigating the Effect of Meteorological Parameters on Heavy Rainfall Events in Different Climates of Iran using Quantile Regression. Journal of Water and Soil Resources Conservation, 12 (3), 33-49. doi: 10.30495/wsrcj.2022.68792.11317.
41.Nadi, M., & Dastigerdi, M. (2022). Preparation of the climate map of Mazandaran province with extended de Martonne method. 2nd National Conference on Environmental Changes Using Remote Sensing and GIS Technology, February 23, Sari, Iran.
42.Gupta, V., Singh, V., & Jain, M. K. (2020). Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 590 (1), 125422.
43.Sobhani, B., Eslahi, M., & Babeian, I. (2017). Comparison of statistical downscaling in climate change models to simulate climate elements in Northwest Iran. Physical Geography Research Quarterly, 49 (2), 301-325. [In Persian]
44.Jia, Y., & Jeong, J. H. (2022). Deep learning for quantile regression under right censoring: DeepQuantreg. Computational Statistics & Data Analysis, 165, 107323.
45.Staffa, S. J., Kohane, D. S., & Zurakowski, D. (2019). Quantile regression and its applications: a primer for anesthesiologists. Anesthesia & Analgesia, 128 (4), 820-830. ‏
46.Koenker, R. (2005). Quantile regression. first ed, New York, Cambridge University Press, 1-25.
47.Koenker, R. (2018). Quantreg: Quantile regression and related methods, version 5.54. R package.
48.Koenker, R., & D’Orey, V. (1978). Algorithm AS 229: Computing regression quantiles. Journal of the Royal Statistical Society, 36, 383-393.
49.Usta, D. F. B., Teymouri, M., & Chatterjee, U. (2022). Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios. Arabian Journal of Geosciences, 15 (5), 416.
50.Chamanehfar, S., Mousavi Baygi, M., babaeian, I., & Modaresi, F. (2022). Future projection for extreme indices of precipitation and temperature over the period 2026-2100 based on the output of CMIP6 models (Case study: Mashhad). Iranian Journal of Irrigation & Drainage, 16 (5), 963-976.
51.Ansari, S., Dehban, H., Zareian, M., & Farokhnia, A. (2022). Investigation of temperature and precipitation changes in the Iran's basins in the next 20 years based on the output of CMIP6 model. Iranian Water Researches Journal,
16 (1), 11-24. doi: 10.22034/iwrj. 2022. 11204.
52.Goodarzi, M. R., Abedi, M. J., & Pour, M. H. (2022). Climate change and trend analysis of precipitation and temperature: A case study of Gilan, Iran. In Current Directions in Water Scarcity Research, 7, 561-587.
53.Ghazi, B., & Jeihouni, E. (2022). Projection of temperature and precipitation under climate change in Tabriz, Iran. Arabian Journal of Geosciences, 15 (7), 621. ‏
54.Kousari, M. R., Ahani, H., & Hendizadeh, R. (2013). Temporal and spatial trend detection of maximum air temperature in Iran during 1960-2005: Global and Planetary Change, 111, 97-110.
55.Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences: Environment international, 35, 390-401.