1.Halajnia, A., Haghnia, G. H., Fotovat, A., & Khorasani, R. (2009). Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma. 150, 209-213.
2.Nahidan, S., & Ghasmzadeh, M. (2022). Biochemical phosphorus transformations in a calcareous soil as affected by earthworm, cow manure and its biochar additions. Applied Soil Ecology. 170, 104310.
3.Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., & Shi, J. (2016). Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere. 142, 128-135.
4.Siddiqui, A. R., Nazeer, S., Piracha, M. A., Saleem, M. M., Siddiqi, I., Shahzad, S. M., & Sarwar, G. (2016). The production of biochar and its possible effects on soil properties and phosphate solubilizing bacteria. Journal of Applied Agriculture Biotechnology. 1, 27-40.
5.Lehmann, J., & Joseph, S. (2009). Biochar for environmental management- an introduction. In: Lehmann, J., and Joseph, S. (eds.), Biochar for environmental management: Science and Technology, London, Earth scan. pp. 1-11.
6.Moreno, J. L., Garcia, C., & Hernandez, T. (2003). Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. European Journal of Soil Science. 54 (2), 377-386.
7.Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research. 8 (1), 121-135.
8.Liu, P., Chen, S., Cui, Y., & Tan, W. (2021). Insights into the inhibition effects of Cd on soil enzyme activities: From spatial microscale to macroscale. Journal of Hazardous Materials. 418, 126274.
9.Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., & Wang, H. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research. 23 (2), 974-984.
10.Hayyat, A., Javed, M., Rasheed, I., Ali, S., Shahid, M. J., Rizwan, M., & Ali, Q. (2016). Role of biochar in remediating heavy metals in soil. In: Phytoremediation, Springer, Cham. pp. 421-437.
11.Azadi, N., & Raiesi, F. (2021). Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Applied Soil Ecology. 167, .
12.Hazrati, S., Farahbakhsh, M., Cerdà, A., & Heydarpoor, G. (2021). Functionalization of ultrasound enhanced sewage sludge-derived biochar: Physicochemical improvement and its effects on soil enzyme activities and heavy metals availability. Chemosphere. 269, 128767.
13.Nie, C., Yang, X., Niazi, N.K., Xu, X., Wen, Y., Rinklebe, J., & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere. 200, 274-282.
14.Jia, W., Wang, B., Wang, C., & Sun, H. (2017). Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. Journal of Environmental Chemical Engineering. 5 (3), 2107-2114.
15.Burt, R. (2004). Soil survey laboratory methods manual: Soil survey investigations. Version 4.0. Natural Resources Conservation Service, Nebraska, United States. 700p.
16.Andersen, J. M. (1976). An ignition method for determination of total phosphorus in lake sediments. Water Research. 10, 329-331.
17.Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal. 42, 421-428.
18.Hossner, L. R. (1996). Dissolution for total elemental analysis. In: Sparks, D.L. (ed.), Methods of soil analysis, ASA and SSSA. Madison, WI. pp. 49-64.
19.Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis. 94, 138-145.
20.Olsen, S. L., & Sommers, L. E. (1982). Phosphorus. In: Page, A.L., Miller, R.H., and Keeney, D.R. (eds.), Methods of Soil Analysis, Part 2: SSSA, Madison. pp. 403-427.
21.Alef, K. (1995). Soil respiration. In: Alef, K., and Nannipieri, P. (eds.), Methods in Applied Soil Microbiology and Biochemistry. London, Harcourt Brace and Company Pub. pp. 214-216.
22.Tabatabai, M. (1994). Soil enzymes. In: R.W. Weaver et al. (eds.), Methods of Soil Analysis, Part 2: SSSA, Madison, WI. pp. 775-833.
23.Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental pollution. 158 (6), 2282-2287.
24.Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science and Technology. 45 (1), 4884-4889.
25.Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems and Environment. 191, 124-132.
26.He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution. 252, 846-855.
27.Liu, H., Zhang, T., Zhu, Q., Huang, D., & Zeng, X. (2022). Effect of humic and calcareous substance amendments on the availability of cadmium in paddy soil and its accumulation in rice. Ecotoxicology and Environmental Safety. 231, 113186 .
28.Pan, S. F., Ji, X. H., Xie, Y. H., Liu, S. H., Tian, F. X., & Liu, X. L. (2022). Influence of soil properties on cadmium accumulation in vegetables: thresholds, prediction and pathway models based on big data. Environmental Pollution.
304, 119225.
29.Strawn, D. G., Bohn, H. L., & O'Connor, G. A. (2020). Soil chemistry. John Wiley and Sons. 376p.
30.Paz-Ferreiro, J., Fu, S., Méndez, A., & Gascó, G. (2014). Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. Journal of Soils and Sediments. 14 (3), 483-494.
31.Wan, Y., Devereux, R., George, S. E., Chen, J., Gao, B., Noerpel, M., & Scheckel, K. (2022). Interactive effects of biochar amendment and lead toxicity on soil microbial community. Journal of Hazardous Materials. 425, 127921 .
32.Nash, J., Miesel, J., Bonito, G., Sakalidis, M., Ren, H., Warnock, D., & Tiemann, L. (2021). Biochar alters soil properties, microbial community diversity, and enzyme activities, while decreasing conifer performance. bioRxiv, 2021-2025.
33.Sardar, K. H. A. N., Qing, C. A. O., Hesham, A. E. L., Yue, X., & He, J. Z. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences.19 (7), 834-840.
34.Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., Cornejo, P., & Kuzyakov, Y. (2020). Meta-analysis of heavy metal effects on soil enzyme activities. Science of the Total Environment. 737, 139744.
35.Hassan, W., Akmal, M., Muhammad, I., Younas, M., Zahaid, K. R., & Ali, F. (2013). Response of soil microbial biomass and enzymes activity to cadmium (Cd) toxicity under different soil textures and incubation times. Australian Journal of Crop Science. 7 (5), 674-680.
36.Jing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., & Huang, Y. (2020). Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Scientific Reports. 10 (1), 1-12.
37.Burns, R. (1982). Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology and Biochemistry. 14, 423-427.
38.Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar. 4 (1), 2-17.
39.Wang, D., Li, C., Parikh, S. J., & Scow, K. M. (2019). Impact of biochar on water retention of two agricultural
soils-A multi-scale analysis. Geoderma. 340, 185-191.
40.Sun, F., & Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. Journal of Plant Nutrition and Soil Science. 177 (1), 26-33.
41.Chintala, R., Schumacher, T.E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., Clay, S. A., & Julson, J. L. (2014). Phosphorus Sorption and Availability from Biochars and Soil/B iochar Mixtures. CLEAN-Soil, Air, Water. 42 (5), 626-634.
42.Kizilkaya, R., Bayrakli, F., & Surucu, A. (2007). Relationship between phosphatase activity and phosphorus fractions in agricultural soils. International Journal of Soil Science. 2, 107-118.