برآورد حداقل تلفات بهره برداری و نشت کانال های خاکی با استفاده از الگوریتم بهینه‌ساز جامعه مورچگان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه مهندسی آبیاری، پردیس ابوریحان، دانشگاه تهران

2 گروه مهندسی آبیاری و زهکشی پردیس ابوریحان دانشگاه تهران

3 دانشیار گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران.

چکیده

سابقه و هدف: در شبکه‌های آبیاری، بخش قابل توجهی از آب در طی فرآیند توزیع به علت تلفات ناشی از نشت و بهره‌برداری هدر می‌رود. با توجه به محدودیت‌های منابع آب لازم است تا به منظور رفع این مشکل روش‌هایی برای کاهش تلفات از کانال ارائه گردند. از اینرو، در تحقیق پیشرو، با هدف ارتقاء بهره‌وری آب در سامانه‌های توزیع آب کشاورزی، روشی برای برآورد حداقل تلفات ناشی از نشت و بهره‌برداری در کانال‌های خاکی با استفاده از مدل بهینه‌ساز الگوریتم جامعه مورچگان ارائه شد.
مواد و روش‌ها: در این پژوهش نوآوری و هدف، بهینه‌سازی تلفات نشت و بهره‌برداری در سامانه‌های توزیع آب با استفاده از الگوریتم جامعه مورچگان است و در نهایت نتایج حاصل از الگوریتم برای مدیریت منابع آب به ویژه در سامانه‌های توزیع آب کشاورزی مورد استفاده قرار می‌گیرد. برای دستیابی به هدف ذکر شده در بخش نخست، اطلاعات پایه مورد نیاز از کانال دشت مغان جمع‌آوری و با هدف شبیه‌سازی هیدرولیکی جریان در کانال‌های روباز از مدل ریاضی بهره‌برداری ساده شده انتگرالی- تأخیری استفاده شد. در ادامه، به منظور حداقل‌سازی تلفات نشت از رابطه استخراج شده از سابقه تحقیق استفاده و بر اساس مقدار نشت اندازه‌گیری شده در هربازه از 23 کیلومتر کانال مدنظر این تحقیق، واسنجی و صحت‌سنجی شد. به‌منظور بهینه‌سازی در این تحقیق، دو تابع تک‌هدفه، به ترتیب با هدف حداقل‌سازی تلفات نشت و حداقل‌سازی کمبود آب تحویلی به هر آبگیر در فرآیند توزیع آب در کانال اصلی، تعریف و در مدل بهینه‌ساز الگوریتم جامعه مورچگان، تنظیم و تدوین شدند. در ادامه با ایجاد لینک بین مدل شبیه‌ساز هیدرولیکی، رابطه برآورد نشت و مدل بهینه ساز الگوریتم جامعه مورچگان، امکان بهینه‌سازی توابع مذکور فراهم شد.
یافته‌ها: با توجه به نتایج حاصل شده، در بهینه‌سازی تابع هدف اول، با هدف حداقل‌سازی تلفات نشت، مقدار تلفات نشت در طول 23 کیلومتر بازه‌ی انتخابی تحقیق، از مقدار 199/0 مترمکعب بر ثانیه (تلفات نشت در وضعیت حال حاضر بهره‌برداری کانال مورد مطالعه) به 187/0 مترمکعب برثانیه کاهش یافت. بنابراین، میزان کاهش تلفات نشت برای تابع هدف اول 6 درصد می‌باشد. اما اعمال تابع هدف اول منجر به افزایش مقدار تلفات بهره‌برداری از 91/39 درصد، که مقدار تلفات بهره‌برداری حاضر در کانال می‌باشد، به 55/45 درصد شده است. به بیان دیگر، تلفات بهره‌برداری در طول بازه‌ی انتخابی نسبت به تلفات بهره‌برداری حاضر در کانال مذکور، 64/5 درصد افزایش یافته است. بنابراین، مقدار کل تلفات در تابع هدف اول در مقایسه با وضعیت حاضر کانال به میزان 39/0 درصد کاهش نمود. درتابع هدف دوم بهینه‌سازی، نتایج حاصل حاکی از کاهش تلفات بهره‌برداری از مقدار 91/39 درصد به مقدار 91/27 درصد می‌باشد که نشان دهنده‌ی کاهش 12 درصدی تلفات بهره‌برداری در مقایسه با وضع موجود این نوع تلفات است. همچنین با اعمال تابع هدف دوم تلفات نشت از مقدار 199/0 مترمکعب برثانیه به 2168/0 مترمکعب بر ثانیه افزایش یافته است، که نشان دهنده‌ی افزایش 9/8 درصدی تلفات نشت در مقایسه با شرایط موجود است. مقدار کل کاهش تلفات در تابع هدف دوم نسبت به وضعیت حاضر برابر 1/3 درصد می‌باشد.
نتیجه‌گیری: نتایج توابع تک هدفه کاهش تلفات نشت و بهره‌برداری نشان دادند که بهینه‌سازی با هدف کاهش تلفات نشت، منجر به کاهش چشمگیری در کاهش کل تلفات در کانال‌های آبیاری نمی‌گردد. اما در سوی مقابل بهینه‌سازی با هدف کاهش تلفات بهره‌برداری، مدل بهینه‌ساز الگوریتم جامعه مورچگان با انتخاب اعماق بهینه توانست مقدار تلفات بهره‌برداری را تا مقدار قابل ملاحظه‌ای کاهش دهد. با توجه به نتایج، به طور کلی می‌توان اذعان نمود که پروژه‌های مدرن‌سازی، نوسازی و بهسازی شبکه‌های آبیاری، که با هدف کاهش تلفات و بهبود بهره‌وری آب انجام می‌گیرد، در صورتی‌که معطوف به بهبود فرآیند بهره‌برداری گردد، منجر به کاهش بیشتر تلفات در سامانه توزیع آب کشاورزی خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of the minimum amount of Seepage and Operational Losses in the Earthen Canals using Ant Colony Optimization Algorithms

نویسندگان [English]

  • Sara Azargashb 1
  • Mehdy Hashemy 2
  • Abbas Roozbahani 3
1 Irrigation Engineering Dept., Aburaihan Campus, University of Tehran
2 Irrigation and Engineering Dept., Aburaihan Campus, University of Tehran
3 Associate Professor, Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran.
چکیده [English]

Background and objectives: a significant portion of water is wasted during the conveyance and distribution process due to seepage and operational losses. To deal with the limitation of water resources, it is necessary to provide methods for reducing losses from canals. Therefore, the current study aimed to represent a method for estimating the minimum seepage and operational losses in earthen canals in order to improve water efficiency in agricultural water distribution systems using ant colony optimization algorithm.
Material and methods: In this research, the innovation and aim are to optimize seepage and operational losses in water distribution system using the ant colony optimization and the results of the algorithm are used to manage water resources, especially in agricultural water distribution systems. To achieve this goal, initially, basic information was collected from the Moghan plain canal and for the purpose of hydraulic flow simulation in the canal a simplified mathematical integrator-delay model was used. Then, in order to minimize seepage losses, a formula extracted from research history was applied. In addition, the seepage formula was calibrated and validated based on the measured seepage amount at each segment over the 23 km of the canal. Also, to optimize the purpose of this study, two single objectives, which they were minimizing seepage and water shortage delivered to each offtake in the main canal distribution process, respectively, were defined and adjusted in ant colony optimization algorithm model. Then, by linking the hydraulic simulator model, the estimation seepage formula and the Ant colony optimization model, it was possible to optimize the mentioned objective functions.
Results: According to the results, optimizing the first objective function, in order to minimize seepage losses caused the reduction of total seepage amount during the 23 Km of selected research area, from 0.199 Cubic meter per second (seepage in the present condition of the studied canal) to 0.187 Cubic meter per second. Therefore, the reduction in seepage losses for the first objective function was 6 percent. However, the application of the first objective function has led to an increase in the amount of operational losses from 39.91%, which is the amount of current operational losses in the canal, to 45.55%. In other words, the operational losses from the first objective function compared to the current operational losses, increased by 5.64%. Accordingly, the total reduction of losses in the first objective function compared to the current losses in the canal was 0.39 percent. By applying the second objective function, the results show a reduction in operational losses from 39.91% to 27.91%, which indicates a 12% reduction in operational losses compared to the current situation of this type of losses. Also, seepage losses have increased from 0.199 cubic meter per second to 0.2168 cubic meter per second, which indicates an 8.9% increase in seepage losses compared to the current situation. Overall, the total losses reduction in the second objective function compared to the current situation is equal to 3.1 percent.
Conclusion: single objective functions of seepage and operational losses reduction results showed that optimization with the purpose of reducing seepage losses did not lead to a significant reduction in total losses in irrigation canals. On the other hand, in order to reduce operational losses, Ant colony optimization algorithm model by choosing optimum water depths could reduce the amount of operational losses to a considerable amount. According to the results, it can be generally acknowledged that modernization, renovation and rehabilitation projects of irrigation networks with the target of reducing losses and improving water use efficiency, if more focused on improving the operating process, more reduction of losses would result in agricultural water distribution system.

کلیدواژه‌ها [English]

  • operational
  • main earthen canal
  • optimization
  • distribution losses
  • seepage losses
1.Soil and Water Resources Engineering Company. 2009. Revision studies ofthe first phase of Moghan irrigationand drainage network. Ardabil. 282p.(In Persian)
2.Barkhordari, S., Shahadany, S.H., Taghvaeian, S., Firoozfar, A.R., and Maestre, J.M. 2020. Reducing losses in earthen agricultural water conveyance and distribution systems by employing automatic control systems. Computers and Electronics in Agriculture. 168. 105122p.
3.Delavar, M., Moghadasi, M., and Morid, S. 2011. Real-time model for optimal water allocation in irrigation systems during droughts. J. Irrig. Drain. Engin. 138: 6. 517-524.
4.De León-Aldaco, S.E., Calleja, H., and Alquicira, J.A. 2015. Metaheuristic optimization methods applied to power converters: A review. IEEE Transactions on Power Electronics. 30: 12. 6791-6803.
5.Dorigo, M., and Stutzle, T. 2004. Ant Colony Optimization. MIT Press, Cambridge, 321p.
6.Dong, L., Yuxiang, H., Qiang, F., Imran, K. M., Song, C., and Yinmao, Z. 2016. Optimizing channel cross section in irrigation area using improved cat swarm optimization algorithm. Inter. J. Agric. Biol. Engin. 9: 5. 76-82.
7.Hadizadeh, F., Allahyari, M.S., Damalas, C.A., and Yazdani, M.R. 2018. Integrated management of agricultural water resources among paddy farmers in northern Iran. Agricultural Water Management. 200: 19-26.
8.Hajibandeh, E., and Nazif, S. 2018. Pressure zoning approach for leak detection in water distribution systems based on a multi objective antcolony optimization. Water resources management. 32: 7. 2287-2300.
9.Kinzli, K.D., Martinez, M., Oad, R., Prior, A., and Gensler, D. 2010. Using an ADCP to determine canal seepage loss in an irrigation district. Agricultural Water Management. 97: 6. 801-810.
10.Liu, L., Dai, Y., and GAO, J. 2014. Ant colony optimization algorithm for continuous domains based on position distribution model of ant colony foraging. Sci. World J. 2014. 428539.
11.Liu, Y., Yang, T., Zhao, R.H., Li, Y.B., Zhao, W.J., and Ma, X.Y. 2018. Irrigation canal system delivery scheduling based on a Particle Swarm Optimization algorithm. Water. 10: 9. 1281p.
12.Martin, C.A., and Gates, T.K. 2014. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. J. Hydrol. 517: 746-761.
13.Marzband, M., Yousefnejad, E., Sumper, A., and Domínguez-García, J.L. 2016. Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization. Inter. J. Elec. Power Ener. Syst. 75: 265-274.
14.Moinaldini, E., Mohamad Reza Pour, O., and Zeinali, M.J. 2016. Optimization of Water Network Distribution Using Fast Messy Genetic and firefly Algorithms in Relopt Model (Case Study: Havanirouz Town, Kerman).J. Water Soil Cons. 23: 4. 45-64.(In Persian)
15.Mohammadi, A., Parvaresh Rizi, A., and Abbasi, N. 2019. Perspective of Water Distribution Based on the Performance of Hydraulic Structures in the Varamin Irrigation Scheme (Iran). Irrigation and Drainage. 68: 2. 245-255.
16.Molden, D.J., and Gates, T.K. 1990. Performance measures for evaluation of irrigation-water-delivery systems. J. Irrig. Drain. Engin. 116: 6. 804-823.
17.Moeini, R., and Afshar, M.H. 2012. Layout and size optimization of sanitary sewer network using intelligent ants. Advances in Engineering Software.51: 49-62.
18.Nguyen, D.C.H., Maier, H.R., Dandy, G.C., and Ascough II, J.C. 2016. Framework for computationally efficient optimal crop and water allocation using ant colony optimization. Environmental Modelling and Software. 76: 37-53.
19.Safavi, H.R., and Enteshari, S. 2016. Conjunctive use of surface andground water resources using the ant system optimization. Agricultural Water Management. 173: 23-34.
20.Serra, P., Salvati, L., Queralt, E., Pin, C., Gonzalez, O., and Pons, X. 2016. Estimating Water Consumption and Irrigation Requirements in a Long‐Established Mediterranean Rural Community by Remote Sensing and Field Data. Irrigation and Drainage.65: 5. 578-588.
21.Schuurmans, J. 1997. Control ofWater Levels in Open-Channels, Ph.D. dissertation, Delft Univ. of Technology, Delft, Netherlands. 235p.
2.Shabani bohlooli, A., and Dastoorani, M. 2019. Evaluation of Geneticand Particle Swarm Optimization Algorithms Based on Non-Dominating Sorting Approach for Multi Objective Optimization Operation of Reservoirs.J. Water Soil Cons. 26: 5. 165-179.(In Persian)
23.Shahverdi, K., Monem, M.J., and Nili, M. 2016. Fuzzy SARSA learning of operational instructions to schedule water distribution and delivery. Irrigation and Drainage. 65: 3. 276-284.
24.Tabari, M.M.R., Tavakoli, S., andMari, M.M. 2014. Optimal designof concrete canal section for minimizing costs of water loss, liningand earthworks. Water resources management. 28: 10. 3019-3034.
25.Tseng, H.E., Chang, C.C., Lee, S.C., and Huang, Y.M. 2019. Hybrid bidirectional ant colony optimization (hybrid BACO): An algorithm for disassembly sequence planning. Engineering Applications of Artificial Intelligence. 83: 45-56.
26.USDA. 2007. Threshold channel design. In: Stream Restoration Design, National Engineering Handbook. United States Department of Agriculture, 714p.
27.Van Overloop, P.J., Horváth, K., and Aydin, B.E. 2014. Model predictive control based on an integrator resonance model applied to an open water channel. Control Engineering Practice. 27: 54-60.
28.Yaltaghian Khiabani, M., and Hashemy Shahdany, S.M. 2018. Design of Automatic Control System to Equitable Water Distribution under Water Shortages and Inflow Fluctuation Operational Conditions, Case study of Roodasht Irrigation district. J. Water Soil Cons. 25: 5. 185-200. (In Persian)