ارزیابی مدل ORYZA2000 در شبیه‌سازی عملکرد و بهره‌وری تولید برنج تحت مدیریت‌های زراعی.

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری رشته زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استاد گروه زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استاد گروه مهندسی آب دانشگاه آزاد اسلامی واحد لاهیجان

4 استادیار گروه زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان

5 موسسه تحقیقات برنج کشور . سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت ، ایران.

چکیده

سابقه و هدف: ایران کشوری نیمه‌خشک با میانگین بارندگی سالانه برابر ۲۴۰ میلی‌متر و ۵۷/0 میلیون هکتار شالیزار می‌باشد. رشد بی‌سابقه تقاضا برای مصرف آب در بخش‌های صنعتی، شرب و کاهش میزان آب قابل‌استفاده در بخش کشاورزی موجب گردیده که استفاده از آب در تولید برنج کاهش ‌یافته و این امر تولید برنج را تهدید می‌کند. از مدل‌های شبیه‌سازی گیاهان زراعی برای انجام مطالعات مختلف از جمله انتخاب گیاه و رقم مناسب برای کاشت، تعیین بهترین مدیریت زراعی، برآورد ظرفیت تولید منطقه‌ای می‌توان استفاده نمود. هدف از این پژوهش بررسی دقت ORYZA2000 در شبیه‌سازی عملکرد دانه و زیست-توده و بررسی بیلان و بهره‌وری تولید برنج تحت تیمار‌های آبیاری و تاریخ کاشت می‌باشد.
مواد و روش‌ها: به‌منظور ارزیابی مدل ORYZA2000 و بررسی بهره‌وری تولید برنج تحت شرایط مدیریت آبیاری و تاریخ کاشت، آزمایشی به‌صورت کرت‌های خردشده با طرح پایه بلوک‌های کامل تصادفی در سه تکرار بر روی رقم محلی (هاشمی) در دو سال زراعی 1395 و 1396 در موسسه تحقیقات برنج ایران، رشت، انجام گردید. دور آبیاری به‌عنوان عامل اصلی در چهار سطح غرقاب دائمی شامل دور آبیاری 5، 10 و 15 روز و تاریخ کاشت به‌عنوان عامل فرعی در سه سطح (اول اردیبهشت، بیستم اردیبهشت و دهم خرداد) در نظر گرفته شدند. ارزیابی مقادیر شبیه‌سازی و اندازه‌گیری شده عملکرد دانه و عملکرد زیستی با استفاده از مؤلفه‌های ضریب تبیین، آزمون t و ریشه میانگین مربعات خطا (RMSE) و ریشه میانگین مربعات خطای نرمال شده (RMSEn) انجام گرفت. در این تحقیق معادله بیلان آب در طول فصل زراعی در نظر گرفته شد که اجزای آن شامل آبیاری، بارندگی، تبخیر واقعی، تعرق واقعی، نشت و نفوذ عمقی و تغییرات آب ذخیره شده در منطقه توسعه ریشه، می‌باشند. مقدار آبیاری برای هر کرت اندازه‌گیری شد، مقدار بارندگی نیز از ایستگاه هواشناسی رشت دریافت شد، سایر اجزای معادله بیلان آب با استفاده از مدل ORYZA2000 محاسبه گردید. در مدل ORYZA2000 مقدار تبخیر و تعرق پتانسیل با استفاده از معادله پریستلی تیلور محاسبه شد. بهره‌وری آب بر اساس میزان عملکرد دانه برنج به ازای میزان تعرق، تبخیر-تعرق، آبیاری و مجموع بارش و آبیاری مورد بررسی قرار گرفت.
یافته‌ها: بر اساس نتایج تحقیق، ریشه میانگین مربعات خطای نرمال شده عملکرد دانه و عملکرد زیستی به ترتیب 8 و 6 درصد تعیین گردید. نتایج این پژوهش نشان داد که در بین مدیریت‌های آبیاری، با توجه به اجزای بهره‌وری آب، دوره آبیاری غرقاب از نظر تعرق و مجموع تبخیر و تعرق و دور آبیاری 15 روزه از نظر میزان آب ورودی به مزرعه و میزان آبیاری، بیش-ترین بهره‌وری را داشتند. در بین تاریخ‌های کاشت، تاریخ کاشت بیستم اردیبهشت با دارا بودن مقدار متوسط عملکرد دانه 3871 کیلوگرم در هکتار، بیش‌ترین مقدار بهره‌وری آب مبتنی بر تعرق، تبخیر و تعرق و تاریخ کاشت یک اردیبهشت بهره‌وری آب بر مبنای آبیاری و مجموع آبیاری و بارندگی را دارا بود. در این شرایط، تاریخ کشت یک اردیبهشت و 20 اردیبهشت به ترتیب با میانگین 136 و 116 میلی‌متر، بیش‌ترین و کم‌ترین ذخیره آب را داشتند. بیش‌ترین میزان ذخیره آب طی دو سال آزمایش در دور آبیاری 10 و 15 روزه (به ترتیب 145 و 143 میلی‌متر) و کم‌ترین ذخیره در تیمار غرقاب (92 میلی‌متر) مشاهده شد.
نتیجه‌گیری: با در نظر گرفتن میزان عملکرد شلتوک و زیست‌توده و بهره‌وری آب و میزان مصرف آب، تیمار آبیاری پنج‌روزه در تاریخ کاشت یک اردیبهشت بهترین عملکرد شلتوک و زیست‌توده را داشته است. این تیمار با نه درصد کاهش مصرف آب و شش درصد کاهش عملکرد شلتوک، بهترین تیمار از نظر بهره‌‌وری و تولید برنج بوده است. با توجه به تحقیق حاضر می‌توان از مدل ORYZA2000 برای پشتیبانی نتایج آزمایش‌های تحت شرایط مدیریت آبیاری و تاریخ کاشت استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of ORYZA2000 model in yield simulation and production productivity of rice under crop managements

نویسندگان [English]

  • Pooya Aalaee Bazkiaei 1
  • Behnam kamkar 2
  • Ebrahim Amiri 3
  • Hossein Kazemi 4
  • Mojtaba Rezaei 5
1 PhD student of Gorgan University of Agricultural Sciences and Natural Resources
2 Proffesor, Agronomy Dep. Gorgan University of Agricultural Sciences and Natural Resources
3 Professor، Department of Water Engineering, Lahijan branch, Islamic Azad University, Iran.
4 Associate. Prof., Agronomy Dep. Gorgan University of Agricultural Sciences and Natural Resources
5 Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
چکیده [English]

Background and Objectives: Iran is a semi-arid region with an average annual rainfall of 240 mm and 0.57 million hectares paddy fields. The unceasing growth in demand for water in the industrial sector, drinking water and reduction in the amount of water available for agricultural sector has led to a reduction of water usage in rice, which threatens its production. Crops simulation models can be used to carry out various studies such as selection of suitable cultivar and plant, determining the best agricultural management and production capacity of the area. The purpose of this study was to investigate the ORYZA2000 accuracy in simulating grain and biomass yields, and studying water balance and productivity of rice affected by irrigation and planting dates.
Materials and Methods: In order to evaluate the ORYZA2000 model and investigate the productivity of rice production under irrigation management and planting date, a split plot experiment based on a randomized complete block design with three replications was carried out on a local (Hashemi) cultivar in the years of 2016 and 2017 in the Rice Research Institute of Iran, Rasht. Irrigation interval was considered as the main factor at 4 levels including full flooding, 5, 10 and 15 days irrigation intervals, and transplanting date was assigned to subplot at three levels (April 21th, May 11th and May 31th). Evaluation of simulated and observed values of grain yield and biological yield was conducted based on coefficient of determination, T-test, root mean square error (RMSE) and normalized root mean square error (RMSEn). In this research, the water balance equation throughout the growing season was considered which its components included irrigation, rainfall, actual evaporation, actual transpiration, leakage and deep penetration, and changes in the water stored in the root development zone. Irrigation amount was measured for each plot, rainfall was also obtained from Rasht's meteorological station and other components of the water balance equation were calculated using the ORYZA2000 model. Potential evapotranspiration in ORYZA2000 model was calculated using Priestley-Taylor equation. Water productivity was investigated based on the grain yield of rice for transpiration, evapotranspiration, irrigation and total precipitation and irrigation.
Results: The results of this study revealed that normalized root means square error of the grain yield and biological yield were determined 8% and 6%, respectively. Also, the results showed that among water managements, flooding irrigation and 15-day irrigation interval had the highest water productivity regarding transpiration and evapotranspiration, and the amount of input water and irrigation, respectively. Among the planting dates, the planting date of May, 11th had the highest water productivity based on transpiration, evapotranspiration and planting date of April, 21th, had the highest water productivity based on irrigation, and irrigation and rainfall. In these conditions, the planting date of April, 11th and May, 21th, with an average of 136 and 116 millimeters, had the highest and lowest water reserves, respectively. The highest amount of water saving during the two years of experiment was observed in irrigation intervals of 10 and 15 days (145 and 143 mm, respectively) and the lowest was recorded in the flood treatment (92 mm).
Conclusion: By considering paddy and biomass yield of rice, water productivity and water consumption, five days irrigation treatment had the best paddy and biomass yield in April, 21st planting date. This treatment was the best treatment in terms of productivity and rice production, with 9% reduction in water use and 6% reduction in paddy yield of rice. According to the present study, the ORYZA2000 model can be used to support the results of experiments under irrigation management conditions and planting dates.

کلیدواژه‌ها [English]

  • Irrigation
  • Planting date
  • Water balance
  • modeling
1.Agricultural Statistics 2017. Volume I: Crop products. 2015-16. Office of Statistics and Information -Technology, Deputy Director of Planning and Economic Affairs. Ministry of Agricultural Jihad. 90p. (In Persian)
2.Amiri Larijani, B., Sarvestani, Z.T., Nematzadeh, G., Manschadi, A.M., and Amiri, E. 2011. Simulating phenology, growth and yield of transplanted rice at different seedling ages in northern
Iran using ORYZA2000. Rice Sci.18: 4. 321-334.
3.Amiri Larijani, B., Tahmasebi, S.Z., and Nematzade, G.A. 2013. Simulation of leaf area index, biomass and grain yield of rice cultivars at different seedling ages using ORYZA2000 model. Seed and plant production. 29: 3. 283-302.
4.Amiri, E. 2008. Evaluation of the rice growth model ORYZA2000 underwater managements. Asian J. Plant Sci.7: 3. 291-297.
5.Amiri, E. 2011. Simulation of rice growth and development under irrigation constraints. Biology science. 5: 4. 1-13. (In Persian).
6.Amiri, E., and Rezaei, M. 2010. Evaluation of water–nitrogen schemes for rice in Iran, using ORYZA2000 model. Commun. Soil Sci. Plan. 41: 20. 2459-2477.
7.Amiri, E., Razavipour, T., and Bannayan, M. 2011a. Evaluation of yield and water productivity in rice under irrigation management and plant density with use ORYZA2000 model. Crop production.
4: 3. 1-19. (In Persian)
8.Amiri, E., Razavipour, T., Farid, A., and Bannayan, M. 2011b. Effects of crop density and irrigation management on water productivity of rice production in Northern Iran: Field and Modeling Approach. Commun. Soil Sci. Plan.42: 17. 2085-2099.
9.Amiri, E., Rezaei, M., Rezaei, E.E., and Bannayan, M. 2014. Evaluation ofCeres-Rice, Aquacrop and Oryza2000 models in simulation of rice yield response to different irrigation and nitrogen management strategies. J. Plant Nutr. 37: 11. 1749-1769.
10.Bouman, B.A.M., Kropff, M.J., Tuong, T.P., Wopereis M.C.S., Ten Berge, H.F.M., and Van Laar, H.H. 2001. ORYZA2000: modeling lowland rice. International Rice Research Institute, Los Banos. 245p.
11.Bouman, B.A.M., and Van Laar, H.H. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric, Syst. 87: 3. 249-273.
12.Brar, S.K., Mahal, S.S., Brar, A.S., Vashist, K.K., Sharma, N., and Buttar, G.S. 2012. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agr. Water manage. 115: 217-222.
13.Cao, B., Hua, S., Ma, Y., Li, B.,and Sun, C. 2017. Evaluation of ORYZA2000 for Simulating Rice Growth of Different Genotypes at Two Latitudes. Agron, J. 109: 6. 2613-2629.
14.Chahal, G.B.S., Sood, A., Jalota,S.K., Choudhury, B.U., and Sharma, P.K. 2007. Yield, evapotranspirationand water productivity of rice–wheat system in Punjab (India) as influenced by transplanting date of rice and weather parameters. Agr. Water Manage.88: 1-3. 14-22.
15.Drenth, H., ten Berge, F.F.M., and Riethoven, J.J.M. 1994. ORYZA simulation modules for potential and nitrogen limited rice production SARP Research Proceedings. Wageningen, the Netherlands. 223p.
16.FAO. 2016. Food and Agricultural Organization of the United Nations (sited in: http://www.fao.org/ index_ en.htm/, 11/4/2018.
17.Jabran, K., Ullah, E., Hussain, M., Farooq, M., Haider, N., and Chauhan, B.S. 2015. Water saving, water productivity and yield outputs of fine-grain rice cultivars under conventional and water-saving rice production systems. Exp, Agr. 51: 4. 567-581.
18.Lampayan, R.M., Samoy-Pascual, K.C., Sibayan, E.B., Ella, V.B., Jayag, O.P., Cabangon, R.J., and Bouman, B.A.M. 2015. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon, Philippines. Paddy and water Environ. 13: 3. 215-227.
19.Mahajan, G., Bharaj, T.S., and Timsina, J. 2009. Yield and water productivity of rice as affected by time of transplanting in Punjab, India. Agr. Water Manage. 96: 3. 525-532.
20.Majumder, D., and Das, L. 2018. Simulating the yield attributes of Boro rice under nitrogen and irrigation management at Mohanpur, West Bengal using ORYZA2000. J. Agrometeorol. 20: 1. 72-74.
21.Pang, G.B., Li, Y., Xu, Z.H., and Gao, H.Z. 2014. Calibration and Evaluation of ORYZA2000 under Water and Nitrogen managements. In Applied Mechanics and Materials. 641: 246-250.
22.Pazoki, A.R., Karimi Nejad, M., and Foladi Toroghi, A.R. 2010. Effect of planting dates on yield of ecotypes of saffron (Crocus sativus L.) in Natanz region. Crop Physiology. 2: 8. 3-12.
(In Persian)
23.Rinaldi, M., Losavio, N., and Flagella, Z. 2003. Evaluation of OIL CROP-SUN model for sun flower in southern Italy. Agric. Sys. 78: 17-30.
24.Sailaja, B., Voleti, S.R., Subrahmanyam, D., Nathawat, M.S., and Rao, N.H. 2013. Validation of Oryza2000 model under combined nitrogen and water limited situations. Ind. J. Plant Physiol. 18: 1. 31-40.
25.Singh, M.C., Jain, A.K., and Jalota, S.K. 2017. Impact of Transplanting Date and Irrigation Scheduling on Water Balance, Water Productivity and Soil Moisture Movement. J. Agric. Eng. 54: 1. 28-32.
26.Singh, R., Van Dam, J.C., and Feddes, R.A. 2006. Water productivity analysis of irrigated crops in Sirsa district, India. Agr. Water Manage. 82: 253-278.
27.Soltani, A., Rahimzadeh Khoei, F., Ghassemi-Golezani, and Moghaddam, M. 1999. Cicer: A computerized model for simulating chickpea growthand yield. Agric. Sci. 9: 3. 89-106.(In Persian)
28.Soundharajan, B., and Sudheer,K.P. 2013. Sensitivity analysis andauto-calibration of ORYZA2000
using simulation-optimization framework. Pady Water Environ. 11: 1-4. 59-71.
29.Tari, D.B., Amiri, E., and Daneshian, J. 2017. Simulating the Impact of Nitrogen Management on Rice Yield and Nitrogen Uptake in Irrigated Lowland by ORYZA2000 Model. Common. Soil Sci. Plan. 48: 2. 201-213.
30.Van Oort, P.A.J., Balde, A., Diagne, M., Dingkuhn, M., Manneh, B., Muller, B., ... and Stuerz, S. 2016. Intensification of an irrigated rice system in Senegal: Crop rotations, climate risks, sowing dates and varietal adaptation options. Eur. J. Agron. 80: 168-181.
31.Wang, W., Ding, Y., Shao, Q., Xu, J., Jiao, X., Luo, Y., and Yu, Z. 2017. Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agr. Forest Meteorol. 232: 89-105.
32.Wang, X., Lu, W., Jun Xu, Y., Zhang, G., Qu, W., and Cheng, W. 2016. The positive impacts of irrigation schedules on rice yield and water consumption: synergies in Jilin Province, Northeast China. Int. J. Agr. Sustain. 14: 1. 1-12.
33.Wopereis, M.C.S., Bouman, B.A.M., Tuong, T.P., ten Berge, H.F.M.,and Kropff, M.J. 1996. ORYZA W:
rice growth model for irrigated and rain fed environments. SARP Research proceeding. Wageningen. The Netherlands. 164p.
34.Wopereis, M.C.S. 1993. Quantifying the impact of soil and climate variability on rainfed rice production. PhD thesis. Wageningen (Netherlands): Wageningen Agricultural University. 188p.
35.Xue, C.Y., Yang, X.G., Bouman, B.A.M., Deng, W., Zhang, Q.P., Yan, W.X., Zhang, T., Rouzi, A., and Wang, H. 2008. Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain. Irrigation Sci. 26: 6. 459-474.
36.Zhang, S., Tao, F., and Zhang, Z. 2017. Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China. Eur. J. Agron. 87: 30-39.
37.Zolfagari, H., Farhadi, B., and Rahimi. H. 2016. Climatic Potentials in Iran for Soybean Cultivation Geogr. Plann. 20: 56. 89-105. (In Persian).