تعیین و آنالیز گسسته سازی حجم مخزن سد جامیشان با برنامه ریزی پویای احتمالاتی در توابع هدف مختلف

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

دانشگاه رازی

چکیده

سابقه و هدف: امروزه یکی از مشکلات موجود در کشور، کمبود آب می‌باشد و این مسئله، لزوم استفاده از یک مدیریت مناسب منابع آب را بیش از پیش آشکار می‌سازد. یکی از روش‌های استخراج قوانین بهره‌برداری از مخازن، روش برنامه‌ریزی پویای احتمالاتی (SDP) می‌باشد. در روش (SDP) یکی از مهم‌ترین عوامل برای رسیدن به جواب بهینه، نحوه گسسته‌سازی حجم مخزن و دبی‌های ورودی به مخزن می‌باشد. در این تحقیق، به منظور دستیابی به تعداد گسسته‌سازی بهینه حجم مخزن در روش برنامه‌ریزی پویای احتمالاتی، با در نظر گرفتن تابع هدف در سه حالت مختلف (0=α، 5/0=α و 1=α) و ثابت فرض نمودن تعداد کلاس دبی ورودی به مخزن، حالت‌های مختلفی از گسسته‌سازی حجم ذخیره به صورت 3، 5، 7 و 10 مورد بررسی قرار گرفته است.
مواد و روش: در این مطالعه، مدل برنامه‌ریزی پویای احتمالاتی به منظور تعیین کلاس بهینه حجم مخرن سد جامیشان در توابع هدف مختلف مورد بررسی قرار گرفته است. با داشتن سری تاریخی جریان ورودی به سد جامیشان و حجم مفید مخزن، جریان ورودی با روش طول بازه‌های مساوی به 3 کلاس و حجم مخزن با روش موران به کلاس‌های 3، 5، 7 و 10 گسسته‌سازی شد. با تعریف تابع هدف به صورت حداقل سازی خسارات سیستم برای هر ترکیب از کلاس جریان و حجم مخزن (k,i) روش برنامه‌ریزی پویای احتمالاتی انجام شد. با دستیابی به سیاست پایا برای هر دوره، مقادیر رهاسازی، حجم جریان و حجم مخزن به صورت قطعی برای هر دوره محاسبه شد.
یافته‌ها: نتایج نشان داد در حالت 0=α که فقط تامین مجموع نیازهای پایاب سد مدنظر است، کلاس بهینه حجم مخزن برابر 7=k انتخاب شد که به ازای آن حداقل مقدار در حجم کمبود تامین مشاهده شد. چنانچه تابع هدف 1=α باشد (فقط حجم مخزن هدف)، در این حالت حجم مخزن بهینه برابر10=k است که به ازای آن اختلاف حجم مخزن از مقدار مطلوب ( ) از حالت ثابت خارج شد و اولین تغییر کاهشی در آن مشاهده شد. تعیین کلاس بهینه حجم مخزن در حالت 1=α متاثر از نوع روش گسسته‌سازی حجم مخزن است که در روش‌های موران و کلاسیک با نتایج یکسان، k بهینه برابر 10 و در روش ساوارنسکی 7=k انتخاب شد. در حالت 5/0=α (دو هدف رهاسازی از مخزن و حجم مخزن هدف) حجم مخزن منتخب بر اساس تابع هدف برابر 10=k انتخاب شد.
نتیجه‌گیری: درشرایطی که تابع هدف فقط تخصیص و خروجی از مخزن است، کلاس بهینه حجم مخزن در نقطه‌ای اتفاق خواهد افتاد که میزان حجم کمبودها با افزایش کلاس‌بندی مخزن ثابت بماند. در این حالت با تقسیم‌بندی حجم مخزن به 7 کلاس میزان حجم کمبود ثابت شده و 7=k به عنوان کلاس بهینه انتخاب شد. در سناریوی دوم، نقطه‌ای به عنوان بهترین گسسته‌سازی از حجم مخزن انتخاب شد که بیش‌ترین نزدیکی را با حجم ذخیره مورد نیاز ( ) داشت، لذا در این حالت کلاس بهینه حجم مخزن 10=k است. در سناریوی سوم، با انتخاب کلاس 10 برای حجم مخزن، دو هدف حداقل سازی حجم ذخیره و رهاسازی از مقادیر مطلوب بهتر رعایت شد و مقدار تابع هدف در کلاس 10 اولین تغییر کاهشی را از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination and analysis of reservoir storage discretization in Jamishan dam using stochastic dynamic programming with different objective functions

نویسندگان [English]

  • Seyed Ehsan Fatemi
  • Hiwa Koohi
Water Engineering Department, Faculty of Agriculture science& Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Background and Objectives: Nowadays, water scarcity is the current issue in Iran. This issue made the more necessity of using the proper water resources management more than the past. Stochastic Dynamic programming (SDP) is one of the methods to obtain the reservoir operation rules. In this method, one of the most important factors to find the optimal solution is discretization of the storage capacity and reservoir inflow. In this research, some storage classes (3, 5, 7 and 10) are analyzed to achieve the optimum storage discretization by SDP method, considering tree types of objective function (α = 0, α = 0.5, α = 1) with the constant reservoir inflow classes.
Materials and Methods: In this study, the SDP model has been used to find the optimal storage of Jamishan reservoir by any objective functions. By using historical reservoir inflow time series, reservoir inflow and storage are discretized in 3 classes with equal length intervals method and also 3, 5, 7 and 10 classes by Moran method, respectively. This method is applied by driving objective function as a minimization of system damage for each composition of the reservoir inflow and storage classes (k, i). By achieving the steady policy at each period, the amount of reservoir Inflow, storage and release are deterministically defined.
Results: The results showed that the optimal storage capacity, only water supply of downstream demands considered as an objective function, is k=7 and there is minimum water deficit in case of α=0. In addition, this would be 10 classes in case of α=1, which the amount of difference between reservoir storage and its desirable would be changed from constant value and the first decreasing change would be appear. Obtaining reservoir storage classes is also affected by method of discretization since this value is obtained 10 for classic and Moran method and 7 in Savarenskiy method. That is selected k = 10 based on the objective function in case of α = 0.5 considered two objectives of reservoir release storage volume simultaneously.
Conclusion: In case of α=0, the objective function is only reservoir release and water allocation, and of the optimal class of reservoir storage would occur at the point where water deficit is constant by increasing the number of storage classifications which k=7 is the optimal class. In the second scenario the objective function which is α=1 is selected as the best discretized class of the reservoir storage which has the closest vicinity to the target storage (Ts). So, in this case, k=10 is the optimum reservoir storage. In the third scenario, α = 0.5, there is a difference between to find the optimal solution when consider the TS or Tr as the criteria. Both objective function are well regarded in this case and also the first decreasing changes is happened in k=10.

کلیدواژه‌ها [English]

  • Key Words: Stochastic Dynamic programming
  • Reservoir storage discretization
  • Reservoir operation
  • Objective function
1.Anvari, S., Mosavi, S.J., and Morid, S.
2015. Comparison of Performance of
Models DP, SDP and SSDP in Optimizing
the Utilization of Multifunctional Water
Purification. Iranian Water Research. 9: 1.
121-111. (In Persian)
2.Bozorg Hadad, O. 2014. Water Resources
Systems Optimization. Tehran University
press, 412p. (In Persian)
3.Baliarsingh, F. 2010. Optimal reservoir
operation by stochastic dynamic
programming-A case study. Inter. J. Earth
Sci. Engin. 3: 2. 258-263.
4.Estalrich, J., and Buras, N. 1991.
Alternative specifications of state variables
in stochastic-dynamic-programming models
of reservoir operation. Applied mathematics
and computation. 44: 2. 143-155.
5.Gablinger, M., and Loucks, D.P. 1970.
Markov models for flow regulation. J.
Hydr. Engin. 96: 1. 165-181.
6.Huang, W.C., Harboe, R., and Bogardi,
J.J. 1991. Testing stochastic dynamic
programming models conditioned on
observed or forecasted inflows. J. Water
Resour. Plan. Manage. 117: 1. 28-36.
7.Jaafar, H.H., Al-Awar, F., and Ahmad, F.
2016. Effect of inflow class selection on
multi-objective reservoir operation using
stochastic dynamic programming. Arabi.
J. Sci. Engin. 41: 12. 4911-4926.
8.Jowkarshorijeh, L., Ganji, A., and
Homayounfar, M. 2014. A Continuous
Solution for Optimal Reservoir Operation
Problem Using the Constraint-State
Technique. Iran-Water Resour. Res. J.
10: 2. 1735-2347.
9.Mohammad Ghasemi, M., SHahraki, J.,
and Sabouhi Sabouni, M. 2016.
Optimization model of hirmand river
basin water resources in the Agricultural
Sector Using Stochastic Dynamic
Programming under Uncertainty
Conditions. Inter. J. Agric. Manage. Dev.
6: 2. 163-171.
10.Pan, L., Jingfei, Z., Liping, L., and Yan,
S. 2012. Optimal reservoir operation
using stochastic dynamic programming.
J. Water Resour. Prot. 4: 342-345.
11.Su, S.Y., and Deininger, R.A. 1974.
Modeling the regulation of Lake
Superior under uncertainty of future
water supplies. Water resources research
10: 1. 11-25.
12.Shokri, A., Haddad, O.B., and Mariño,
M.A. 2012. Reservoir operation for
simultaneously meeting water demand
and sediment flushing: Stochastic
dynamic programming approach with
two uncertainties. J. Water Resour. Plan.
Manage. 139: 3. 277-289.
13.Torabi, M., and Mobasheri, F. 1973. A
Stochastic dynamic programming model
for the optimum operation of a
multi-purpose reservior. Jawra J. Amer.
Water Resour. Assoc. 9: 6. 1089-1099.
14.Vedula, S., and Mujumdar, P.P. 2005.
Water resources systems: modelling
techniques and analysis. Tata McGrawHill, New delhi, 279p.
15.Yakowitz, S. 1982. Dynamic
programming applications in water
resources. Water resources research.
18: 4. 673-696.