بررسی تاثیر ضریب شکل مخزن بر امواج ناشی از شکست سد با استفاده از روش‌های پرش قورباغه و لکس در مختصات منحنی‌الخط

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب دانشگاه رازی

2 گروه مهندسی آب دانشگاه رازی کرمانشاه

3 گروه مهندسی عمرن دانشگاه رازی

چکیده

سابقه و هدف
پیش‌بینی مولفه‌های هیدرولیکی عمق و سرعت به دلیل تاثیرگذار بودن در شدت فاجعه شکست سد، برای مهندسین هیدرولیک همواره حائز اهمیت بوده است. در گذشته تحقیقات بسیاری به جهت بررسی و پیش‌بینی خصوصیات هیدرولیکی امواج ناشی از شکست سد با استفاده از روش‌های عددی انجام پذیرفته است. لزوم انجام این تحقیق، نیاز به گسترش دامنه پژوهش‌ها در حل عددی عوامل تاثیرگذار در پدیده شکست سد می‌باشد. در این تحقیق مدل کامپیوتری جامع در مختصات منحنی‌الخط برای انتقال فضای فیزیکی غیرمستطیلی به فضای محاسباتی توسعه داده شده است که با استفاده از روش تفاضل محدود صریح و استفاده هم‌زمان از الگوریتم‌های پرش قورباغه و لکس بر روی مش جابه‌جاشده معادلات حاکم بر آب‌های کم-عمق در مسئله شکست سد را حل می‌نماید. این عمل با افزایش تعداد نقاط درگیر در محاسبات و ایجاد ارتباط بیشتر بین آنها باعث می‌شود گرادیان‌های تیز هندسی و هیدرولیکی هموار شده و احتمال رخ دادن نوسان و عدم همگرایی کمتر شود.
مواد و روش‌ها
در این تحقیق معادله‌های مورد نظر، معادله‌های حاکم بر آب‌های کم‌عمق می‌باشند که با توجه به عدم توانایی سیستم مختصات کارتزین در انعکاس مرزهای نامنظم دامنه فیزیکی، در سیستم مختصات منحنی‌الخط بر روی شبکه جابه‌جا شده منفصل شده‌اند. روش‌ منفصل‌سازی، روش صریح می‌باشد که به صورت همزمان از الگوریتم های پرش قورباغه‌ای و لکس بهره می‌جوید.
یافته‌ها
به منظور صحت‌سنجی مدل حاضر، مقایسه نتایج آن با انداره‌گیری‌های آزمایشگاهی یا با نتایج سایر مدل‌های عددی توسط محققان قبلی برای چندین مورد ارایه شده است. از جمله این موارد شکست ایده‌ال در کانال با عمق پایاب است که در این حالت نتایج دبی و عمق آب برای شکست سد در کانال افقی به طول 100 متر با دقت بالا شبیه‌سازی شده است. هم‌چنین شبیه-سازی شکست سد با مخزن ذوزنقه‌ای با قاعده بزرگ 04/2 متر، قاعده کوچک 51/0 متر و ارتفاع 02/2 متر در کانال با بستر خشک صورت گرفته است و نتایج مدل برای دبی و عمق با همخوانی خوب با نتایج آزمایشگاهی ارائه شده است. شکست جزئی نامتقارن سد در بستر تراز جمله دیگر موارد بررسی شده در این تحقیق است که شبیه‌سازی شکست نامتقارن در مخزن با طول و عرض یک متر برای سه حالت ضریب شکل مختلف 1، 25/1 و 5/1 انجام گرفته است. هیدروگراف دبی و اشل برای حالات مختلف شبیه‌سازی شده است با افزایش ضریب شکل مقادیر دبی و تراز سطح آب به دلیل افزایش حجم مخزن افزایش یافته است.
نتیجه‌گیری
در این تحقیق مدل کامپیوتری در سیستم مختصات منحنی‌الخط با در نظر گرفتن معادلات آب‌های کم‌عمق و استفاده از روش‌های پرش‌قورباغه و لکس به‌صورت هم‌زمان برای پدیده شکست سد ارائه شده است. در شبیه‌سازی شکست ایده‌آل بر روی بستر با عمق پایاب مدل حاضر توانایی تقریب حل تحلیلی را با دقت بالا دارد. در شبیه‌سازی شکست در مخزن ذوزنقه‌ای بر روی بستر خشک نتایج مدل عددی حاضر با نتایج آزمایشگاهی هم‌خواهنی لازم را دارد. هم‌چنین در بررسی هدف اصلی تحقیق به بررسی نتایج مدل عددی حاضر برای شبیه‌سازی شکست جزئی نامتقارن سد با ضرایب شکل مختلف مخزن در بستر خشک پرداخته شده است که مشاهده گردید تراز سطح آب با تغییر ضرایب شکل در پی تغییر شکل دیواره‌های مخزن، نسبت به مخزن ساده افزایش پیدا می‌کند. هم‌چنین مقدار دبی در واحد عرض برای مخزن با ضریب شکل بزرگتر نسبت به مخزن با ضریب شکل کمتر مقداری بیشتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of reservior shape coefficient on dam-break waves using Leap-Frog and Lax methods in curvilinear coordinates

نویسندگان [English]

  • Zahra Mehrmoosavi 1
  • Rasoul Ghobadian 2
  • Mitra Javan 3
1 water engineering department
2 depaartment of razi university
3 civil department of razi university
چکیده [English]

Abstract
Investigation of the effect of reservior shape coefficient on dam-break waves using Leap-Frog and Lax methods in curvilinear coordinates
Background and objectives
The prediction of hydraulic components of depth and speed has always been important for hydraulic engineers because of its impact on the severity of the disaster dam break. In the past, many studies have been carried out to investigate and predict the hydraulic properties of dam-break waves using numerical methods. The necessity of this research is the need to expand the scope of research in numerical solution of factors influencing the dam failure phenomenon. In this research, a comprehensive computer model has been developed in which using the explicit finite difference method and simultaneous use of Leap-Frog and Lax algorithms on the staggered mesh shallow water equations are solved to simulation dam break problem. This will increase the number of involved points in the computation and sharpen hydraulic gradients become smooth and the probability of oscillation and divergence will decrease without the use of artificial viscosity.

Materials and methods
In this study, the equations of interest are the governing shallow water equations. Due to the inability of the Cartesian coordinate system to reflect the irregular boundaries of the physical domain, in the curvilinear coordinate system on the staggered mesh are discretized. The method of discretization is a explicit method that simultaneously utilizes Leap-Frog and Lax algorithms.

Results:
In order to validate the present model, comparing its results with laboratory measures or with the results of other numerical models has been proposed by several researchers. One of these cases is the ideal failure in the canal with tail water, in which case the results of the discharge and the depth of water were simulated for the failure of the dam in a 100 meters horizontal channel with a high accuracy. The simulation of the dam failure with a trapezoidal reservoir with a maximum of 2.04 meters, a small 0.05 m, and a height of 2.02 meters in a canal with a dry bed was carried out, and the results of the model for the discharge and depth with the consistency well presented with laboratory results. The partial asymmetric dam failure in the wet bed is another case investigated in this study, which simulated an asymmetric failure in a reservoir with a length and width of one meter for three different shape coefficients of 1, 1.25, and 1.5. The flow and discharge hydrographs have been simulated for different situations, with the increase of the shape coefficient, discharge values and the level of the water surface increase due to increased reservoir volume.
Conclusion:
In this research, a computer model in the curvilinear coordinate system with the consideration of shallow-water equations and the use of Lax and Leap frog methods are presented simultaneously for the dam failure phenomenon. In the simulation of the ideal failure with tail water, the present model ability to approximate the analytical solution is highly accurate. In the simulation of failure in trapezoidal reservoirs on the dry bed, the results of the present numerical model are in agreement with experimental results, also in studying the main objective of the research, the results of the present numerical model for simulating partial asymmetric dam failure with different shape coefficients of reservoir in dry bed have been investigated. It was observed that water level increased with the change of shape coefficients following the deformation of the reservoir walls, compared with the simple reservoir. Also, the amount of discharge per unit width for a reservoir with a larger coefficient of shape than a reservoir with a lower coefficient is greater.

کلیدواژه‌ها [English]

  • dam break
  • Leap Frog and Lax methods
  • curvilinear coordinate
  • shape coffiesiont of reservior
1.Alamatiyan, A., and Jafarzade, M. 2009. Evaluation of turbulence models insimulation of oblique standing shockwaves in super-critical channel flow. J.Civil Engin. Sharif Univ. Pp: 17-27.
(In Persian)
2.Bani-Habib, A., and Nazariye, F. 2012.Two-dimensional simulation of debrisflow in the reservior of silt detentiondam. J. Iran-Water. Manage. Sci. Engin.11: 39. 77-87. (In Persian)
3.Bani-Hashemi, and Kiyanian, M. 2007.Two-dimensional model of gradiual dambreak with fread and mac-cormackmethod. In 4th Civil EngineeringConference, University of Tehran, Tehran,
Iran. (In Persian)
4.Chaudhry, M. 2008. Open Channel Flow.University of South Carolina Press.Columbia, 523p.
5.Falconer, R.A. 1992. Researchdevelopments of flow and water qualitymodeling in coastal and estuarine water.Ashugate publishing Co.
6.Ghobadian, R. 2015. Two dimentionaldam break modeling by explicit finitedifference method. In 14th HydraulicConference, Zahedan University, Zahedan,Iran. (In Persian)
7.Hadian, M., and Zarati, A. 2008.Numerical models for shallow watersflows and their applications in river andcoastal engineering. Amir Kabir Univ.Press, 293p. (In Persian)
8.HaoyaO, Z., Jinbao, S., Shichen, Z., andWeiwei, W. 2012. Principal ComponentAnalysis Method Applying to Earthquakedamaged Reservoir’s ComprehensiveEvaluation. Proc. of International Conferenceof Modern Hydraulic Engineering, 9-11Mars, Nanjing- Jiangsu Province- China.
9.Hoffmann, K.A., and Chiang, S.T. 2000.Computational Fluid Dynamics Volume I.Engineering Education System, Wichita,Kan, USA, 228p.
10.Mirmohamad Hoseyni, T., Tahershamsi,A., and Mirmohamad Hoseyni, M. 2016.Laboratory study of the effect of reservoirshape coefficient on flood characteristicsdue to dam failure. J. Civil Engin. SharifUniv. 32-2: 1/2. 119-125. (In Persian)
11.Robb, D.M., and Vasquez, J.A. 2015.Numerical simulation of dam-breakflows using depth-averaged hydrodynamicand three-dimensional CFD models.J. In 22th Canadian Hydro technical
Conference, Montreal, Canada.
12.Sobey, R., Harper, B., and Mitchell, G.1980. Numerical modeling of tropicalcyclone storm surge. Costal Engin. Proc.
J. 725-745.
13.Stoker, J.J. 1957. Water Waves themathematical theory with applications.
Interscience Peress, New York.
14.Tarzi, A., and Kermani, M. 2014. Using a natural elemental grid method insolving equations governing freeflowing fluids. J. Hydr. 9: 4. 1-14.(In Persian)
15.Wood, M., and Wang, K. 2015.Modeling dam-break flows in channelswith 90 degree bend using analternating-direction implicit basedcurvilinear hydrodynamic solver.Computers & Fluids J. 114: 254-264.
16.Yu-chuan, B., and XU, D. 2007.Numerical Simulation of two-dimensionaldam-break flows in curved channel.Hydrodynamics J. 19: 6. 726-735.
17.Zhang, Y., and Lin, P. 2016. Animproved SWE model for simulation ofdam-break flow. Water managementproceeding of institution of civilengineers J. 169: 6. 260-274.