پیش بینی اثرات اقدامات اصلاحی بر خصوصیات رواناب سطحی و میزان فرسایش خاک در آبخیز بنکوه حوضه رودخانه حبله رود

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

چکیده
سابقه و هدف: هدر رفت منابع آب‌وخاک از پیامدهای بهره‌برداری نامتعادل از منابع تولید است. مدیریت بهینه اراضی باعث بهره‌برداری پایدار از منابع آب‌وخاک و کاهش تخریب این منابع می‌شود. هدف این تحقیق ارائه گزینه‌های مدیریتی مبتنی بر پوشش گیاهی و پیش‌بینی اثرات آن‌ها بر خصوصیات رواناب سطحی و فرسایش خاک در حوزه آبخیز بنکوه (حدود 3300 کیلومترمربع) با استفاده از مدل‌سازی است. بدین ترتیب برنامه‌ریزان و مدیران آبخیز می‌توانند با کمک این پیش‌بینی‌ها، تصمیمات مناسبی برای حل مشکلات این حوضه اتخاذ نمایند.

مواد و روش‌ها: در این تحقیق با توجه به نوع و گسترش مشکلات در منطقه موردمطالعه و تعیین اهمیت نسبی آن‌ها، یازده فعالیت مدیریتی شامل قرق، درختکاری، علوفه کاری، رایپرین، تراسبندی، اگروفارستری، احداث باغ، پیتینگ، کنتورفارو، بذرپاشی و کپه‌کاری برای برطرف نمودن مشکلات حوضه انتخاب شدند. به‌منظور برآورد خصوصیات رواناب سطحی (ارتفاع رواناب، فسفر و نیترات) و مقدار فرسایش خاک در شرایط موجود به ترتیب از مدل L-THIA و معادله تجدیدنظر شده جهانی هدر رفت خاک (RUSLE) در چارچوب سیستم اطلاعات جغرافیایی استفاده شد. فاکتورهای RUSLE شامل R، K، LS، C و P می‌باشند که به ترتیب از داده‌های بارندگی، نقشه خاک منطقه، مدل رقومی ارتفاع و تکنیک سنجش‌ازدور محاسبه ‌شده‌اند. به‌منظور پیش‌بینی اثر هر یک از اقدامات اصلاحی پیشنهادی بر میزان فرسایش خاک، برآورد ارزش عددی فاکتورهای P و C درروشRUSLE با توجه به جداول استاندارد موجود در متون علمی مربوط و بر مبنای قضاوت خبرگان انجام شد. برای ارزیابی کارایی روش‌های مورداستفاده، از معیارهای آماری RMSE و MAE استفاده شد. پس از ارزیابی کارایی مدل، از مدل‌ها برای پیش‌بینی اثرات احتمالی اقدامات اصلاحی بر خصوصیات رواناب سطحی و فرسایش خاک استفاده شد.

یافته‌ها: مقادیر متوسط فاکتورهای R، K،LS وC به ترتیب 85/1(MJmmha-1h-1y-1)، 29/0(t ha h ha-1 MJ-1 mm-1)، 82/10 و 86/0 برای شرایط فعلی بودند. نقشه فرسایش خاک‌نشان می‌دهد که میزان فرسایش خاک در سطح حوضه، از مقدار ناچیز تا 49/33 تن در هکتار در سال متغیر است و 12/11 درصد از کل منطقه در طبقه فرسایشی زیاد و خیلی زیاد قرار دارد. میزان ارتفاع رواناب سالانه حوضه از 12/1 تا 27/9 سانتی‌متر متغیر است و میانگین ارتفاع رواناب سالانه حوضه 74/6 سانتی‌متر برآورد شده است. تجزیه‌وتحلیل نتایج نشان می‌دهد که اقدامات اصلاحی قرق و کپه‌کاری با توجه به کلیه شاخص‌ها (ارتفاع رواناب، فسفر، نیترات و فرسایش خاک) بیشترین اثر را خواهند داشت؛ اما بر اساس واحد سطح اقدامات اصلاحی، علوفه کاری، درخت‌کاری و احداث باغ به ترتیب بیشترین اثر را بر شاخص‌ ارتفاع رواناب خواهند داشت. علاوه بر این، ازنظر شاخص‌های‌ فرسایش خاک و فسفر اقدامات احداث باغ، درخت‌کاری و علوفه کاری به ترتیب بهترین عملکرد را ارائه خواهند کرد. ازنظر شاخص نیترات، اقدامات احداث باغ، درخت‌کاری و رایپرین به ترتیب حداکثر اختلاف را با مقادیر این شاخص‌ در وضعیت فعلی حوضه نشان خواهند داد. اجرای هم‌زمان تمامی فعالیت‌های مدیریتی باعث کاهش حدود 20/13 درصدی ارتفاع رواناب و 30/8 درصدی فرسایش حوضه خواهد شد.

نتیجه‌گیری: با در نظر گرفتن شرایط توپوگرافی و مورفولوژیکی حوزه آبخیز بنکوه و همچنین فاکتورهای فرسایش طبیعی و انسانی حوضه، به‌منظور جلوگیری از هدر رفت منابع خاک و آب باید به مناطق بحرانی توجه ویژه‌ای شود. با توجه به مشکلات آبخیز بنکوه در زمینه منابع آب‌وخاک، اجرای اقدامات اصلاحی مناسب برای حل مشکلات حوضه ضروری است. با توجه به وسعت زیاد مناطق مستعد برای اجرای فعالیت‌های قرق و کپه کاری در حوضه، این اقدامات بیشترین تأثیر را در بهبود خصوصیات رواناب سطحی و فرسایش خاک‌دارند. به‌منظور تصمیم‌گیری بهتر در انتخاب اقدامات اصلاحی توجه به سایر اثرات حاصل از اجرای اقدامات در مقیاس حوضه بنکوه از جنبه‌های اقتصادی، اجتماعی و اکولوژیکی پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the impacts of management activities on surface runoff characteristics and soil erosion in the Bonekooh Watershed – Hablehroud River_Iran

نویسندگان [English]

  • Amir Sadodin
  • Ehsan Alvandi
  • Vahedberdi Sheikh
چکیده [English]

Unbalanced exploitation of natural resources in Iran has led to the loss of soil and water resources. Optimal land management leads to sustainable exploitation of water and soil resources and hence reduces the depletion of these resources. The aim of this research is to develop a list of vegetation-based management activities and to predict the impacts of the activities on surface runoff characteristics and soil erosion in the Bonekooh Watershed (about 3300km2) using a modeling exercise. The predictions can assist watershed planners and managers to make appropriate decisions solving the problems in the watershed.
In this research, considering the type and extent of the environmental problems in the study area and determining their relative importance, 11 management activities were chosen to solve the watershed problems. The L-THIA model and the Global Soil Loss Equation(RUSLE) model within the framework of the GIS were used to estimate the surface runoff characteristics (runoff, phosphorus and nitrate) and the amount of soil erosion, respectively. The RUSLE factors include R, K, LS, C, and P, which are calculated from rainfall data, regional soil maps, digital elevation models, and remote sensing techniques, respectively. The values of P and C factors in the RUSLE were estimated according to the standard tables provided in the relevant literature and based on expert judgment. Statistical criteria of RMSE and MAE were used to evaluate the efficiency of the models for the current status of the watershed. Subsequent to model evaluation, the models were used to predict the possible impacts of various management activities on surface runoff characteristics and soil erosion.
The average values of R, K, LS and C factors for the current status were 1.85 (MJ mm ha-1h-1y-1), 0.29 (t ha h ha-1 MJ-1 mm-1), 10.82, and 0.86, respectively. Soil erosion map shows that the amount of soil erosion changes from a insignificant value to 33.49 (tons per hectare per year) in the region. Also, 11.12 percent of the total area is located in the high and very high erosion classes. Annual runoff varies from 1.12 to 9.27 cm with an average of 6.74 cm. The analysis indicates that rangeland exclusion and pile seeding management activities in the watershed will have the most impact considering all indices (surface runoff, soil erosion, Phosphorus, Nitrate). But per unit of management activities, forage cultivation, afforestation, and orchard development have the most impact on runoff depth index, respectively. Additionally, considering both soil erosion and phosphorus indices, orchard development, afforestation, and forage cultivation activities will have the best performance, respectively. In addition, in terms of nitrate index, orchard development, afforestation and riparian activities will present maximum differences with the index value for the current status of the watershed. Implementing of all management activities will result a decrease of runoff depth by about 13.20% and a reduction of soil erosion by 8.30% in the watershed.
Given the topographic and morphologic conditions of the Bonekooh watershed, and also natural and human-made erosion factors for the watershed, critical areas should be considered in order to prevent the loss of soil and water resources. Because of existing water and soil resources problems in the Bonekooh Watershed, it is required to implement appropriate management activities to fix the problem. Due to the vast extent of areas being suitable for implementing rangeland exclusion and pile seeding activities in the watershed, these activities have the greatest impact on improvement of surface runoff characteristics and soil erosion. To make an improved decision in choosing the best management activities, it is suggested to consider other impacts arising from implementing the activities at the watershed scale from economic, social and ecological point of views.

کلیدواژه‌ها [English]

  • Soil erosion
  • Runoff
  • Management activities
  • the Hablehroud River
1.Ahiablame, L., Engel, B.A., and Chaubey,I. 2012. Representation and evaluation oflow impact development practices with LTHIA-LID: an example for site planning.Environ. Poll. 1: 2. 34-45.
2.Akbarifard, S., Qaderi, K., andAliannejad, M. 2017. Parameterestimation of the nonlinear Muskingumflood-routing model using water cyclealgorithm, J. Water. Manage. Res.8: 16. 33-43.
3.Arekhi, S., and Niazi, Y. 2010.Investigating application of GIS and RSto estimate soil erosion and sedimentyield using RUSLE (Case study: Upperpart of Ilam Dam Watershed, Iran), J.Water Soil Cons. 17: 2. 1-28. (In Persian)
4.Bagarello, V., Di Stefano, C., Ferro, V.,Giordano, M., and Pampalone, V. 2012.Estimating the USLE soil erodibilityfactor in Sicily, south Italy. Appl. Eng.Agric. 28: 2. 199-206.
5.Bahremand, A., Smedt, F., Corluy, J.,Liu, Y.B., Poorova, J., Velcicka, L., andKunikova, E. 2006. Application ofWetSpa model for assessing land useimpacts on floods in the MargecanyHornasd Watershed. Slovaia. J. WaterSci. Technol. 53: 10. 37-45.
6.Bai, M., Sadoddin, A., and SalmanMahini, A.R. 2014. Prediction of theeffects of implementing ecologicalmanagement scenarios on landscapestructure for Chehel - Chai Watershed in
Golestan province of Iran. J. Geograph.Space. 13: 44. 19-46. (In Persian)
7.Binh, Ph.D., Wu, Ch., and Hsieh, Sh.2010. Land use change effects ondischarge and sediment yield of Song Cau Catchment in northern Vietnam. J.Environ. Sci. Engin. 5: 1. 92-101.
8.Bonilla, C., José, A., Reyes, L., and Magri,A. 2010. Water erosion prediction usingthe revised universal soil loss equation(RUSLE) in a GIS framework, centralChile. J. Agric. Res. 70: 1. 159-169.
9.Fallah Suraki, M., Kavian, A., andOmidvar, E. 2015. Zoning of soil erosion hazard in the Haraz Watershed by using model RUSLE2. National Conference on Climate Change and Engineering
Sustainable Agriculture and Natural Resources, Tehran- September 17.
10.Farhan, Y., Dalal, Z., and Farhan, I.2013. Spatial estimation of soil erosion risk using RUSLE approach, RS and GIS techniques: A case study of the Kufranja Watershed, northern Jordan. J.
Water Resour. Prot. 5: 12. 1247-1261.
11.Ganasri, B., and Ramesh, H. 2015. Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin.Geoscience Frontiers. Pp: 1-9.
12.Habibi, H., Amir Safari, A., and Karam, A. 2016. Determining of the amount of sediment yield Marl lands in watershed inrainfall simulator scale. J. Water. Engin.Manage. 8: 3. 275-289. (In Persian)
13.Haregeweyn, N., Poesen, J., Verstraeten,G., Govers, G., de Vente, J., Nyssen, J.,Deckers, J., and Moeyersons, J. 2012.Assessing the performance of a spatiallydistributed soil erosion and sediment
delivery model (WATEM/SEDEM) inNorthern Ethiopia. Land Degrad. Dev.24: 2. 188-204.
14.Jafarian, Z., Beshtar, V., and Kavian, A.2017. Simulation effects of improvementand restoration operations of rangeland on soil loss using RUSLE model,Physical Geography research quarterly.
49: 1. 55-69. (In Persian)
15.Kamaludin, K., Lihan, T., Ali Rahman,Z., Mustapha, M., Idris, W., and Rahim,S. 2013. Integration of remote sensing,RUSLE and GIS to model potential soilloss and sediment yield (SY). Hydrol.
Earth System Sci. 10: 4567-4596.
16.Karimi Sangchini, E., Ownegh, M.,Sadoddin, A., Tahmasebi Pur, N., andRezaee, H. 2017. A system dynamicsmodel to predict the effects ofvegetation-based management scenarioson structural landscape ecology inHablehrud River Basin, WatershedEngineering and Management. 9: 1. 58-70.
(In Persian)
17.Keshtkar, A.R., Salajegheh, A.,Sadoddin, A., and Allan, M.G. 2013.Application of Bayesian networks forsustainability assessment in catchmentmodeling and management, case
study: the Hablehrood river catchment.Ecological Modeling. 268: 48-54.
18.Lamba, J., Thompson, A., Karthikeyan,K.G., Panuska, J., and Good, L.2016. Effect of best managementpractice implementation on sedimentand phosphorus load reductions at
subwatershed and watershed scale usingSWAT model, Inter. J. Sed. Res.31: 386-394.
19.Li, N., Xu, Y., and Guo, H.C. 2007.Analysis of Long-Term Impact ofurbanization on surface runoff inXitiaoxi river basin. EnvironmentalInformatics Archives. 5: 346-353.
20.Lim, K.J., Choi, J., Kim, K., Sagong,M., and Engel, B.A. 2003. Development of sediment assessment tool for effective erosion control (SATEEC) in smallscale watershed. Transactions of the
Korean Society of Agricultural Engineers.45: 5. 85-96.
21.Liu, Y., Ahiablame, L., Bralts, V., and Engel, B. 2015. Enhancing a rainfallrunoff model to assess the impacts of BMPs and LID practices on storm runoff, J. Environ. Manage. 147: 12-23.
22.Liu, Y., Bralts, V.F., and Engel, B.A. 2015. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Science of the
Total Environment. 511: 298-308.
23.Moghaddam, M.R. 2011. Range and range management, Tehran University Press, 470p. (In Persian)
24.Mohammadi, M., Fallah, M., Kavian, K., Gholami, L., and Omidvar, E. 2017.The application of RUSLE Model inspatial distribution determination of soilloss Hazard. J. Ecohydrol. 3: 4. 645-658.
(In Persian)
25.Moore, I.D., and Wilson, J.P. 1992.Length slope factor for the RevisedUniversal Soil Loss equation: simplifiedmethod of solution. J. Soil Wat. Corner.47: 5. 423-428.
26.Mtibaa, S., Hotta, N., and Irie, M.2018. Analysis of the efficacy and costeffectiveness of best managementpractices for controlling sediment yield:A case study of the Joumine watershed,
Tunisia, Science of the Total Environment.617: 1-16.
27.Mwangi, J.K., Shisanya, C.A.,Gathenya, J.M., Namirembe, S., andMoriasi, S. 2015. A modeling approachto evaluate the impact of conservationpractices on water and sediment yield in
Sasumua Watershed, Kenya. Soil andWater Conservation. 70: 2. 75-90.
28.Nkwunonwo, U.C., Whitworth, M., andBaily, B. 2015. A Review and criticalanalysis of the efforts towards urbanflood reduction in the lagos region ofNigeria, Nat., Hazards Earth Syst., Sci.
Discuss. Pp: 3897-3923.
29.Noori, Z., Salajegheh, A., Malekian,A., and Moghadamnia, A. 2018.Investigating the effects of bestmanagement practices on the reductionof point and non-point source pollutionof water using SWAT model (CaseStudy: Seimareh River). Iran. J. SoilWater Res. 48: 5. 995-1006. (In Persian)
30.Pandey, A., Chowdary, V., and Mal, B.2007. Identification of critical erosionprone areas in the small agriculturalwatershed using USLE, GIS and remotesensing. Water Resources Management.
21: 4. 742-746.
31.Perry, P., and Nawaz, R. 2008. Aninvestigation into the extent and impactsof hard surfacing of domestic gardens inan area of Leeds, United kingdom.Landscape and Urban Planning. 86: 1-13.
32.Renard, K.G., and Freimund, J.R. 1994.Using monthly precipitation data toestimate the R factor in the revisedUSLE. J. Hydrol. 157: 287-306.
33.Sadeghi, S.H.R., and Saeidi, P. 2010.Reliability of sediment rating curves fora deciduous forest watershed in Iran. J.Hydrol. Sci. 55: 5. 821-831.
34.Sadeghi, S.H.R., Moatamednia, M., andBehzadfar, M. 2011. Spatial andtemporal variations in the RainfallErosivity Factor for Iran. J. Agr. Sci.Tech. 13: 451-464.
35.Sadoddin, A., Letcher, R.A., Jakeman,A.J., Croke, B.W., and Newham, L.T. H.2011. A Bayesian model decisionsupport system for salinity management.First International Conference of
Sustainable Watershed Management(SuWaMa), Istanbul, Turkey.
36.Sadoddin, A., Shahabi, M., and Bai, M.2017. Integrated watershed assessmentand management Principles andapproaches for modeling and decisionmaking. Gorgan University ofAgricultural Sciences and NaturalResources Publishing. 170p. (In Persian)
37.Sekara, W.G., Gupta, N.A., Valeo, C.,Hasbani, J.G., Qiao, Y., Delaney, P. andMarceau, D.J. 2012. Assessing theimpact of future land-use changes onhydrological processes in the ElbowRiver watershed in southern Alberta,Canada. J. Hydrol. 4: 41. 220-232.
38.SheshukovKyle, A., Douglas-Mankin, K.,Sinnathamby, S., and Daggupati, P. 2016.Pasture BMP effectiveness using anHRU-based subarea approach in SWAT,J. Environ. Manage. 166: 276-284.
39.Solaimani, K., Modallaldoust, S., andLotfi, S. 2009. Investigation of land usechanges on soil erosion process usinggeographical information system. Inter.J. Environ. Sci. Technol. 6: 3. 415-424.
40.Tang, Z., Engel, B.A., Pijanowski, B.C.,and Lim, K.J. 2005. Forecasting landuse change and its environmental impactat a watershed scale. Environmentalimpact at a watershed scale. J. Environ.
Manage. 76: 45-35.
41.Teh, S.H. 2011. Soil erosion modelingusing RUSLE and GIS on CAMERONHIGHLANDS,MALAYSIA forhydropower development, A 30 ECTScredit units Master´s thesis, Pp: 1-71.
42.Turner, B.L., Moss, R.H., and SKole,D.L. 1993. Relating land use and globalLand-cover change: A proposal for anIGBP- HDP core project global changereport, Stokholm, Sweden. Pp: 221-223.
43.Van der Knijff, J.M., Jones, R.J.A., andMontanarella, L. 2000. Soil erosion riskassessment in Europe, EUR19044 EN.Office for Official Publications of theEuropean Communities, Luxembourg,
34p.
44.Vipul Shinde, K., Tiwari, S., andManjushree, S. 2010. Prioritization ofmicro watersheds on the basis of soilerosion hazard using remote sensing andgeographic information system. J. Water
Resour. Environ. Engin. 2: 3. 130-136.
45.Wang, G., Gertner, G., Fang, S., andAnderson, A.B. 2003. Mapping multiplevariables for predicting soil loss bygeostatistical methods with TM imagesand a slope map. Photogrammetric
Engineering and Remote Sensing.69: 8. 889-898.
46.Yang, L., Ma, K., Guo, Q., and Bai, X.2008. Evaluating long-term hydrologicalimpacts of regional urbanisation inHanyang, China, using a GIS model andremote sensing. J. Sust. Dev. World
Ecol. 15: 350-356.