ارزیابی روش های مدل سازی و طبقه بندی نظارت شده در تهیه نقشه شوری خاک با استفاده از تصاویر ASTER و ETM

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه سمنان

2 هیات علمی دانشکده جغرافیای دانشگاه تهران

3 استاد تمام دانشکده منابع طبیعی دانشگاه یزد

4 کارشنارس اداره منابع طبیعی و آبخیزداری اردکان (یزد)

چکیده

چکیده
سابقه و هدف: شناسایی مناطق شور و تهیه نقشه‌های رقومی میزان شوری خاک‌ها، گامی موثر در مدیریت صحیح اراضی شور به شمار می‌رود. از آنجا که بخش وسیعی از کشور ما را اراضی شور تشکیل می‌دهد، اهمیت این موضوع بشدت احساس می‌شود. شوری خاک یکی از مراحل تخریب زمین بوده که منجر به کاهش بهره‌وری نهایی در خاک می‌شود. شوری خاک می‌تواند ناشی از فرایندهای طبیعی یا اعمال انسانی باشد اما در هر صورت یکی از مخاطرات جدی محیط می باشد. لذا تهیه نقشه شوری خاک باعث ارتقاء سطح مدیریت شده و در فرایند تصمیم گیری برای برنامه ریزی توسعه پایدار مورد استفاده قرار می گیرد. امروزه تهیه نقشه‌های شوری خاک به کمک تصاویر ماهواره‌ای و تکنیک‌های سنجش از دور براحتی امکان‌پذیر است و تحقیقات زیادی جهت پایش شوری خاک به کمک تصاویر ماهواره‌ای در اکثر نقاط جهان انجام شده است. با توجه به مشکلات تولید نقشه‌های شوری خاک از داده‌های ماهواره‌ای در این تحقیق دو رویکرد مدل سازی و طبقه‌بندی در تولید نقشه‌های خاک ارزیابی شده‌اند. هدف از تحقیق حاضر نیز ارزیابی روش مدل‌سازی و طبقه‌بندی‌های نظارت شده به منظور تهیه نقشه شوری خاک با استفاده از تلفیق تصاویر ASTER و ETM (که کمتر مورد توجه قرار گرفته است) در شرق دشت سمنان می-باشد.
مواد و روش‌ها: به منظور انجام تحقیق حاضر ابتدا، پس از تعیین موقعیت منطقه، با تشکیل یک شبکه بر روی تصویر منطقه، موقعیت نقاط نمونه‌برداری مشخص گردید. در مرحله بعد با انجام پیمایش‌های صحرایی، نمونه-برداری انجام و سپس مقدار EC اندازه‌گیری شدند. سپس با اعمال پیش پردازش داده‌های ماهواره‌ای و همچنین تکنیک‌های پردازش تصویر از قبیل آنالیز مولفه‌های اصلی، ادغام باندهای چند طیفی ASTER با باند پانکروماتیک ETM+، تبدیل تسلدکپ، فیلترینگ، ایجاد شاخص‌های شوری، نسبت‌گیری طیفی و همچنین با استفاده از روش‌های‌ طبقه‌بندی نظارت شده، نقشه شوری خاک منطقه تهیه گردید.
یافته‌ها: نتایج تحقیق نشان داد که نقشه شوری تهیه شده به روش مدل‌سازی با باند 8 تصاویر ASTER، مولفه حاصل از ادغام باند پانکروماتیک +ETMبا باند5 ASTER و مولفه حاصل از شاخص شوری (Salinity2) ارتباط معنادار دارد و نتایج حاصل از اعتبارسنجی مدل با مقادیر MAE، RMSE و R به ترتیب معادل 163، 165 و 81/0 بدست آمد که دلالت بر مناسب بودن مقادیر تخمینی این مدل دارد. صحت نقشه شوری تهیه شده به روش‌های طبقه‌بندی نظارت شده نیز به ترتیب برای روش حداکثر احتمال 84% و برای روش حداقل فاصله از میانگین 74% برآورد گردید که حاکی از دقت کمتر این روش‌ها نسبت به نقشه شوری به روش مدل‌سازی می‌باشد.

نتیجه‌گیری: با توجه به نتایج بدست آمده در این تحقیق، می‌توان با تعدیل نمودن شاخص‌های شوری، شاخص-های جدیدی را جهت تهیه نقشه شوری خاک بدست آورد. همچنین نتایج نشان داد که دخالت باند سه ASTER موجب تشخیص بهتر مولفه شوری خاک شده است و این بخش از طیف الکترومغناطیس شامل (52/0-86/0، 145/2-185/2، 295/2-365/2 میکرومتر) می‌تواند در تهیه نقشه شوری خاک در مناطق مختلف مفید واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of modeling methods and supervised classification for mapping soil salinity using ASTER and ETM images

چکیده [English]

Abstract:
Background and objectives: Identifying the saline soils and preparing digital maps of soil salinity, is an effective step in correct management of saline lands. Since vast areas of Iran are covered by saline soils, so these maps are very important. Soil salinity is one of the stages of land degradation that eventually leads to decrease in soil productivity. Soil salinity could be caused by natural processes or human activities. However, soil salinity is a major environmental hazard. So, providing a soil salinity map for these regions, can improve the level of management. Soil salinity maps are prepared by using satellite images as easily as possible. Considering the difficulty of mapping salinity from satellite data, in this study, two approaches for modeling and classification of soil salinity maps were evaluated. The purpose of this study is to evaluate the modeling method and supervised classification of soil salinity mapping using ASTER and ETM+ images in the East of Semnan plain.
Materials and methods: After site selection and spreading a net over the image of area, we determined the location of sampling points. The soil salinity map was prepared After the following steps: measuring EC of soil samples, geometrical and radiometric modification of satellite data, applying some processing such as principal components analysis, fusion of ASTER multispectral bands with ETM+ panchromatic band, transformation of tasseled cap, filtering, producing the salinity indexes, assessment of spectral, and also using supervised classification method.
Results: the salinity map was obtained using modeling method from the eighth band of Aster satellite. The results show that the component that is obtained from integration of an ETM+ panchromatic band and band 5 of ASTER, and a component of salinity index (Salinity2) have a significant relationship. The model validation by the MAE, RMSE and R showed that the selected model has good performance. The accuracy of the salinity map which was produced by Supervised Classification method has been estimated as 84% based on maximum likelihood method and 74% based on minimum distance method. This represents that the accuracy obtained by the above mentioned methods is lower than modeling method for preparing the salinity map.
Conclusion: According to the results of the study, adjusting the salinity indicators resulted in obtaining new indicators for mapping soil salinity. A better diagnosis of soil salinity was resulted from the use of band 3 of Aster image. . So it can be suggested that a part of the electromagnetic spectrum, including (0.52 – 0.86, 2.145-2.185 and 2.295-2.365 micrometers) can be useful in mapping soil salinity in different areas.

کلیدواژه‌ها [English]

  • Keywords: Soil Salinity
  • ASTER
  • Salinity index
  • Supervised Classification
  • Semnan Plain
1.Abbas, A., Khan, S., Hussain, N., Hanjra, M.A., and Akbar, S. 2013. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth. 55-57: 43-52.
2.Abdolfattah, M.A., Shahid, SH.A., and Othman, Y.A. 2009. Soil Salinity Mapping Model Developed Using RS and GIS – A Case Study from Abu Dhabi, United Arab Emirates. Europ. J. Sci. Res. 26: 3. 342-351.
3.AbdiNam, A. 2004. Evaluation of soil salinity maps using satellite data to establish the correlation between soil salinity values in Qazvin. Research and reconstruction in agriculture and horticulture. 64: 33-38. (In Persian)
4.Abrams, M., Hook, S., and Ramachandran, B. 2002. ASTER User Handbook. Version 2. Jet Propulsion Laboratory-NASA/California Institute of Technology, Pasadena (CA), USA. (12).
5.Alavi Panah, S.K. 2006. Application of remote sensing in geosciences (earth sciences). TehranUniversity Press, 478p. (In Persian)
6.Al-Khudhairy, D.H.A., Leemhuis, C., Hoffmann, V., Sheperd, I.M., Calaon, R., Thompson, J.R., Gavin, H., Gasca-Tucker, D.L., Zalidis, G., Bilas, G., and Papadimos, D. 2002. Monitoring wetland ditchwater levels using LandsatTMand ground-based measurements. Photogrammetric Engineering & Remote Sensing. 68: 809-818.
7.ASTERWEB. 2008. ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer web page. Jet Propulsion Laboratory-NASA. URL: http://asterweb.jpl. nasa.gov/ (Last access 8 September 2009).
8.Bahtti, A.U., Mulla, D.J., and Frazier, B.E. 1991. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment. 37: 3. 181-191.
9.Ben-Dor, E. 2002. Quantitative remote sensing of soil properties. Adv. Agron. 75: 173-243.
10.Castañeda, C., Herrero, J., and Casterad, M.A. 2005. Landsat monitoring of playa-lakes in the Spanish Monegros desert. J. Arid Environ. 63: 479-516.
 11.Csillag, F., Pásztor, L., and Biehl, L. 1993. Spectral band selection for the characterization of salinity status of soils. Remote Sensing of Environment. 43: 231-242.
12.Dadresi, A., Yamani, M., Pakparvar, M., and Davarzani, Z. 2006. To assess changes in soil salinity using data from remote sensing and GIS in the hot and dry south-eastern city of Sabzevar. J. Geograph. Dev. 7: 173-184. (In Persian)
13.Dashtakiyan, K., Pakparvar, M., and Abdollahi, J. 2008. Methods of soil salinity maps using Landsat satellite data in Marvast. J. Range Des. Res. 15: 2. 31. 139-157. (In Persian)
14.Dehaan, R., and Taylor, G.R. 2003. Image-derived spectral endmembers as indicators of salinization. Int. J. Rem. Sens. 24: 4-20. 775-794.
15.Dehni, A., and Lounis, M. 2012. Remote Sensing Techniques for Salt Affected Soil Mapping: Application to the Oran Region of Algeria, Procedia Engineering. 33: 188-198.
16.Demorate, F. 1998. Land cover mapping estimated in Rondonia, Brazil. Int. J. Rem. Sens. 19: 5. 921-934.
17.Douaoui, A.E.K., Nicolas, H., and Walteer, Ch. 2006. Detecting salinity hazards within
a semiarid context by means of combining soil and remote sensing data. Geoderma.
134: 217-230.
18.Farifteh, J., Farshad, A., and George, R.J. 2006. assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma. 130: 191-206.
19.Fatahi, M.M., Nuroozi, A.A., Abkar, A.A., and Khalkhli, S.A. 2007. Comparison of classification and mapping land use (Landuse) arid areas using satellite imagery. Research and development on natural resources. 76: 122-135. (In Persian)
20.Fatemi, S.B., and Rezaee, Y. 2006. Principles of remote sensing. Azadeh publications. 257p. (In Persian)
21.Fernandez-Buces, N., Siebe, C., Cram, S., and Palacio, J.L. 2006. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico. J. Arid Environ. 65: 4. 644-667.
22.Frazier, B.E., and Cheng, Y. 1989. Remote sensing of soils in eastern palouse region with landsat thematic mapper, Remote Sensing of Environment. 28: 317-325.
23.Gutierrez, M., and Johnson, E. 2010. Temporal variations of natural soil salinity in an arid environment using satellite Images. J. South Amer. Earth Sci. 30: 46-57.
24.Hick, P.T., and Russell, W.G.R. 1990. Some spectral considerations for remote sensing of soil salinity. Aust. J. Soil Res. 28: 417-431.
25.Hunt, G., and Salisbury, J.W. 1976. Visible and near infrared spectra of minerals and rocks: XII. Metamorphic rocks. Mod. Geol. 5: 219-228.
26.Kappa, M., Shawan, A., and Erasmi, S. 2005. Remote sensing based classification of salt affected soils as an indicator for landscape degradation in the south of Aleppo, Syria. UN convertion to combat desertification, Trier, Germany, 7-9 sep. 2005.
27.Melendez-Pastor, I., Navarro-Pedreño, J., Koch, M., and Gómez, I. 2010. Applying imaging spectroscopy techniques to map saline soils with ASTER images. Geoderma. 158: 55-65.
28.Metternicht, G.I., and Zinck, J.A. 2003. Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment. 85: 1. 1-20.
29.Naeij Noori, R. 2001. Exploring the possibility of land separating the salt and gypsum Kashan plain area using satellite data TM. M.Sc. Thesis, desertification Natural Resources Engineering, Department of Natural Resources, University of Technology. 108p. (In Persian)
30.Parma, R. 2008. Comparison capability ETM satellite images and LISS III data type mapping Zagros forests (forests case study: Ghalajeh Kermanshah province). M.Sc. Thesis. ForestryEngineeringGorganUniversity of Agricultural Sciences and Natural Resources. 109p. (In Persian)  
31.Paudyal, K.R., and Erenstein, Q. 2005. Multistakeholder program to accelevate technology adoption to improve rural livelihoods in rainfed eastern Gangetic plains (IFAD TAG634). Annual technical progress report. By: International Maize and wheat improvement center.
 32.Khan, S., and Abbas, A. 2007. Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. International Congress on Modelling and Simulation. (MODSIM 2007). Modelling and Simulation Society of Australia and New Zealand, Pp: 2632-2638.
33.Taj Gordan, T., Ayyobi, Sh., Shataee, Sh., and Khormali, F. 2008. Soil surface salinity maps using remotely sensed data ETM+ (Case study: North Aq Qala, Golestan province). J. Soil Water Cons. (Natural Resources and Agricultural Sciences). 16: 2. 1-81. (In Persian)  
34.Wright, G.G., and Morrice, J.G. 1997. Landsat TM spectral information to enhance the landcover of Scotland, 1998 Dataest. Int. J. Rem. Sens. 18: 18. 3811-3834.
35.Yarbrough, L.D., Easson, G., and Kuszmaul, J.S. 2005. Using At-Sensor Radiance and Reflectance Tasseled Cap Transforms Applied to Change Detection for the ASTER Sensor, presented at IEEE Third International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Beau Rivage, Biloxi, Mississippi, USA, 5p.  
36.Zinck, J.A. 2001. Monitoring soil salinity from remote sensing data, 1st workshop EARSeL special interest group on remote sensing for developing countries, soil and soil salinity,
Pp: 357-408.