1.Hosseinifard, M., Ghorbani Javid, M., Soltani, E., Alahdadi, I., & Kahrizi, D. (2022). Study of growth indices and yield of double haploid lines of Camelina plant (Camelina sativa L.). Crop Production. 16(2), 23-42. [In Persian]
2.Zhang, C. J., Gao, Y., Jiang, C., Liu, L., Wang, Y., Kim, D. S., Yu, J., Yu, L., Li, F., Fan, Y., Chen, M., Zhang, Y., Min, X., Zhang, H., & Yan, X. (2021). Camelina seed yield and quality in different growing environments in northern China. Industrial Crops and Products. 172, 114071.
3.Zanetti, F., Alberghini, B., Jeromela, A. M., Grahovac, N., Rajkovic, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A Review. Agronomy for Sustainable Development, 41(1), 1-18.
4.Anderson, J. V., Wittenberg, A., Li, H., & Berti, M. T. (2019). High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Industrial Crops and Products. 137, 501-507.
5.Zanetti, F., Eynck, C., Christou, M., Krzyzaniak, M., Righini, D., Alexopoulou, E., Stolarski, M. J.,
Van Loo, E. N., Puttick, D., & Monti, A. (2017). Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Industrial Crops and Products. 107, 602-608.
6.Hosseini Sanehkoori, F., Pirdashti, H., & Balhshandeh, E. (2023). Effect of environmental factors on camelina sativa seed germination and emergence. Acta Physiologiae Plantarum. 45, 1-14.
7.Rezaei-Chiyaneh, E., Seyyedi, M., Ebrahimian, E., Siavash Moghaddam, S., & Damalas, C. A. (2018). Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Industrial Crops Products. 112, 741-748.
8.Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global synthesis of drought effects on maize and wheat production. Plos One. 11(5), 1-15.
9.Borzoo, S., Mohsenzadeh, S., Moradshahi, A., Kahrizi, D., Zamani, H., & Zarei, M. (2021). Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis. 83, 79-90.
10.Falaknaz, M., Aalami, A., Mehrabi, A., Sabouri, A., Kahrizi, D., & Karimi, N. (2019). Cellular and physiological responses to drought stress in Aegilops tauschii genotypes. Cellular and Molecular Biology. 65(7), 84-94.
11.Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., & Nayyar, H. (2018). Drought or/and heat stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science. 9, 1-19.
12.Yuan, L., Mao, X., Zhao, K., Ji, C., Xue, J., & Li, R. (2017). Characterization of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses. Biology Open. 6(7), 1024-1034.
13.Ahmed, Z., Liu, J., Waraich, E. A., Yan, Y., Qi, Z., Gui, D., Zeng, F., Tariq, A., Shareef, M., Iqbal, H., Murtaza, G., & Zhang, Z. (2020). Differential physio-biochemical and yield responses of Camelina sativa L. under varying irrigation water regimes in semi-arid climatic conditions. Plos One, 15(12), 1-18.
14.Gao, L., Caldwell, C. D., & Jiang, Y. (2018). Photosynthesis and growth of Camelina and Canola in response to water deficit and applied nitrogen. Crop Science Society of America. 58, 393-401.
15.Ghorbani, M., Kahrizi, D., & Chaghakaboodi, Z. (2020). Evaluation of Camelina sativa doubled haploid lines for the response to water-deficit stress. Journal of Medicinal Plants and By-products. 2, 193-199.
16.Talebnejad, R., Lor-Mohammad-Hassani, M., & Sepaskhah, A. R. (2021). Winter cultivation of Camelina under different irrigation regimes in Bajgah region of Fars province. Iranian Journal of Irrigation and Drainage. 15(5), 1081-1091. [In Persian]
17.Ahmed, Z., Waraich, E. A., Qi, Z., Gui, D., Shreef, M., & Iqbal, H. (2019). Physio-biochemical and yield responses of two contrasting Camelina sativa L. breeding lines under drought stress. International Journal of Agriculture and Biology. 22, 1187-1196.
18.Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., Hafeez, M. B., Balooch, S., Zahra, N., Ren, X., Rafiq, M., & Saqib, M. (2021). Seed priming with Sorghum water extract improves the performance of Camelina (Camelina sativa (L.) Crantz.) under salt stress. Plants. 10(4), 1-15.
19.Pazira, E. (1999). Land reclamation research on soil physico-chemical improvement by salt leaching in South-Western part of Iran. Innovation of Agricultural Engineering Technologies for the 21st century, P.R. China.
20.Gholizadeh, A. (2013). Evaluation of some Iranian commercial bread wheat cultivars regarding to salinity stress. Tarbiat Modares University. Tehran. M.Sc. Thesis. 132 p. [In Persian]
21.Ghorbani, Kh., & Jamali, S. (2021). The effects of irrigation with different mixture Caspian seawater and fresh water on yield of quinoa (c.v. Sajama) in greenhouse conditions. Journal of Water and Soil Conservation. 28(2), 63-81. [In Persian]
22.Teimoori, N., Ghobadi, M., & Kahrizi. (2023). The use of silicon in controlling osmotic stress and its effect on seed germination characteristics and seedling growth of Camelina. Iranian Journal of Seed Science and Technology.
12(3), 65-78.
23.Golamian, S. M., Ghamarnia, H., & Kahrizi, D. (2017). Effects of saline water on Camelina (Camelina sativa) yield in greenhouse condition. Water and Irrigation Management. 7(2), 333-347. [In Persian]
24.Ayers, R. S., & Westcott, D. W. (1985). Water quality for agriculture. Irrigation and Drainage paper, No. 29, Rev. 1, FAO, Rome.
25.Rafiee, M. R., Moazed, H., Ghaemi, A. A., & Broomandnasab, S. (2016). FAO-56 method for estimating evapotranspiration and crop coefficients of eggplant in greenhouse and outdoor conditions. Journal of Irrigation Sciences and Engineering. 39(8), 59-77. [In Persian]
26.Neupane, D., Solomon, J. K., Mclennon, E., Davison, J., & Lawry, T. (2020). Camelina production parameters response to different irrigation regimes. Industrial Crops and Products. 148, 112286.
27.Sintim, H. Y., Zheljazkov, V. D., Obour, A. K., Garcia, A., & Foulke, T. K. (2020). Evaluating agronomic responses of camelina to seeding date under rainfed conditions. Agronomy Journal. 108(1), 349-357.
28.Jouyban, A., Give, H. S., & Noryan, M. (2015). Relationship between agronomic and morphological traits in barley varieties under drought stress condition. International Research Journal of Applied and Basic Sciences. 9(9), 1507-1511.
29.Tabassam, M. A., Hussain, M., Sami, A., Shabbir, I., Bhutta, M. A., Mubusher, M., & Ahmad, S. (2014). Impact of drought on the growth and yield of wheat. Scientia Agriculture. 7(1), 8-11.
30.Steppuhn, H., Falk, K. C., & Zhou, R. (2010). Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Canadian Journal of Soil Science. 90, 151-164.
31.Ashraf, M., & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59(2), 206-216.
32.Kaya, C., Higgs, D., & Kirnak, H. (2001). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Plant Physiology. 27, 47-59.
33.Azimi Gandomani, M., Faraji, H., Dehdari, A., Movahhedi Dehnavi, M., & Alinaghizadeh, M. (2009). Evaluation of the effect of salinity stress on ion accumulation, quantitative and qualitative yield of spring rapeseed cultivars. Environmental Stresses in Crop Sciences. 1(1), 27-37. [In Persian]
34.Zlatev, Z. S., & Yordanov, I. T. (2004). Effect of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Plant Physiology. 30(4), 3-18.
35.Ashraf, M. (2001). Relationships between growth and gas exchange characteristics in some salt tolerant amphidiploids Brassica species in relation to their diploid parents. Environmental and Experimental Botany. 45, 155-163.
36.Jankowski, K. J., Sokolski, M., & Kordan, B. (2019). Camelina: yield and quality response to nitrogen and sulfur fertilization in Poland. Industrial Crops and Products. 141, 111776.
37.Amiri Darban, N., Nourmohammadi, Gh., Shirani Rad, A. H., Mirhadi, S. M. J., & Majidi Heravan, I. (2020). Investigation the effect of ammonium sulfate and potassium sulfate application on seed and oil yields of Camelina (camelina sativa L.) under late-season drought stress. Agricultural Science and Sustainable Production. 30(2), 239-251. [In Persian]