1.Cui, J., Jin, Q., Li, Y., & Li, F. (2019). Oxidation and removal of As (III) from soil using novel magnetic nanocomposite derived from biomass waste. Environmental Science: Nano, 6(2), 478-488.
2.Kalisz, S., Kibort, K., Mioduska, J., Lieder, M., & Małachowska, A. (2022). Waste management in the mining industry of metals ores, coal, oil and natural gas-A review. Journal of environmental management, 304, 114239.
3.Kennedy, J., Dean, J., Okeme, I., & Sapsford, D. (2023). An assessment of the efficacy of sodium carbonate for
semi-passive treatment of circumneutral zinc-bearing mine waters. Journal of Water Process Engineering, 53, 103764.
4.Mohseni, A., Reyhanitabar, A., Najafi, N., Oustan, S., & Bazargan, K. (2018). Kinetics of DTPA extraction of Zn, Pb, and Cd from contaminated calcareous soils amended with sewage sludge. Arabian Journal of Geosciences, 11, 1-9.
5.Chen, L., Zhou, M., Wang, J., Zhang, Z., Duan, C., Wang, X., Li, Z., Li, Z., & Fang, L. (2022). A global meta-analysis of heavy metal (loid) s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. Science of the Total Environment, 835, 155441.
6.Li, Y., Ye, Z., Yu, Y., Li, Y., Jiang, J., Wang, L., Wang, G., Zhang, H., Li, N., Xie, X., & Cheng, X. (2023). A combined method for human health risk area identification of heavy metals in urban environments. Journal of Hazardous Materials, 449, 131067.
7.Jensen, J., Larsen, M. M., & Bak, J. (2016). National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry. Environmental pollution, 214, 334-340.
8.Yazdankhah, S., Rudi, K., & Bernhoft, A. (2014). Zinc and copper in animal feed–development of resistance and
co-resistance to antimicrobial agents in bacteria of animal origin. Microbial ecology in health and disease, 25(1), 25862.
9.Xu, D., Zhou, P., Zhan, J., Gao, Y., Dou, C., & Sun, Q. (2013). Assessment of trace metal bioavailability in garden soils
and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotoxicology and environmental safety, 90, 103-111.
10.Alazzaz, A., Rafique, M. I., Al-Swadi, H., Ahmad, M., Alsewaileh, A. S., Usman, A. R., Al-Wabel., M. I., & Al-Farraj, A. S. (2023). Date palm-magnetized biochar for in-situ stabilization of toxic metals in mining-polluted soil: evaluation
using single-step extraction methods and phytoavailability. International Journal of Phytoremediation, 25(12), 1687-1698.
11.Miles, L. J., & Parker, G. R. (1979). DTPA soil extractable and plant heavy metal concentrations with soil-added Cd treatments. Plant Soil: 51(1), 59-68.
12.Kouassi, N. G. L. B., Yao, K. M., Sangare, N., Trokourey, A., & Metongo, B. S. (2019). The mobility of the trace metals copper, zinc, lead, cobalt, and nickel in tropical estuarine sediments, Ebrie Lagoon, Côte d’Ivoire. Journal of soils and sediments, 19, 929-944.
13.Fangueiro, D., Bermond, A., Santos, E., Carapuça, H., & Duarte, A. (2005). Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information. Talanta, 66(4), 844-857.
14.Motaghian, H. R., & Hosseinpur, A. R. (2013). Zinc desorption kinetics in wheat (Triticum Aestivum L.) rhizosphere in some sewage sludge amended soils. Journal of soil science and plant nutrition, 13(3), 664-678.
15.Rafique, M. I., Usman, A. R., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2020). In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: effects of biochar feedstock and pyrolysis temperature. Journal of Soils Sedimet. 20(1), 330-339.
16.Sohi, S. P. (2012). Carbon storage with benefits. Science. 338(6110): 1034-1035.
17.Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In: Klute A. (ed.) Methods of Soil Analysis. Part l.2nd edition. Agron. Monogr. 9. ASA and SSSA, Madison. Wisconsin. pp. 404-407.
18.Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. SSSA, Madison. pp. 417-435.
19.Leoppert, R. H., & Suarez, D. L. (I996). Carbonate and gypsum. In: Sparks D. L. (ed.) Methods of Soil Analysis. SSSA, Madison. pp. 437-447.
20.Sumner, M. E., & Miller, P. M. (1996). Cation exchange capacity and exchange coefficient. In: Sparks D. L. (ed.) Methods of Soil Analysis. SSSA. Madison. pp. 1201-1230.
21.Nelson, D. W., & Sommers L. E. (1996). Carbon, organic carbon and organic matter. In Sparks D. L. (ed.) Methods
of Soil Analysis. SSSA, Madison. pp. 961-1010.
22.Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46(2), 260-264.
23.Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J.42, 421-428.
24.Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere, 145, 336-341.
25.Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60 (2), 309-319.
26.Havlin, J. L., Westfall, D. G., & Olsen, S. R. (1985). Mathematical models for potassium release kinetics in calcareous soils. Soil Science Society of America Journal, 49 (2), 371-376.
27.Martin, H. W., & Sparks, D. L. (1983). Kinetics of nonexchangeable potassium release from two coastal plain soils.
Soil Science Society of America Journal, 47, 883-887.
28.Barreto, M. S. C., Gomes, F. P., de Carvalho, H. W. P., & Alleoni, L. R. F. (2023). Desorption kinetic and sequential extraction of Pb and Zn in a contaminated soil amended with phosphate, lime, biochar, and biosolids. Environmental Science and Pollution Research, 30(57), 120793-120804.
29.Kabiri, P., Motaghian, H., & Hosseinpur, A. (2021). Impact of biochar on release kinetics of Pb (II) and Zn (II) in a calcareous soil polluted with mining activities. Journal of Soil Science and Plant Nutrition, 21(1), 22-34.
30.Kabata-Pendias, A., & Pendias, H. (1992). Trace Elements in Soils and Plants. CRC Press, Boca Raton, Florida, USA. pp. 51-70.
31.Li, J. S., Wang, P., & Liu, L. (2013). Environmental prediction model for dynamic release of Lead in contaminated soil under washing Remediation. EJGE, 18, 55-70.
32.Motaghian, H. R., & Hosseinpur, A. R. (2014). Zinc desorption kinetics in bean (Phaseolus vulgaris L.) rhizosphere in sewage sludge-amended calcareous soils. Environmental earth sciences, 71, 965-973.
33.Reyhanitabar, A., & Gilkes, R. J. (2010). Kinetics of DTPA extraction of zinc from calcareous soils. Geoderma. 154(3-4), 289-293.
34.Kabiri, P., Hosseinpur, A., Motaghian, H., & Iranipour, R. (2024). Modeling the kinetic equations in describing the release rate of lead in a naturally contaminated calcareous soil treated with different biochars. Iranian Journal of Soil and Water Research, 55 (5), 815-832.
35.Ding, Z., Alharbi, S., Ali, E. F., Ghoneim, A. M., Hadi Al Fahd, M., Wang, G., & Eissa, M. A. (2022). Effect of phosphorus-loaded biochar and nitrogen-fertilization on release kinetic of toxic heavy metals and tomato growth. International journal of phytoremediation, 24(2), 156-165.