1.Abdollahi, A., & Ahmadianfar, I. (2021). Multi-mechanism ensemble interior search algorithm to derive optimal hedging rule curves in multi-reservoir systems. Journal of Hydrology. 598, 126211.
2.Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new Metaheuristic optimization algorithm. Information Sciences. 540, 131-159.
3.Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications. 181, 115079.
4.Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An Efficient Optimization Algorithm based on Weighted Mean of Vectors. Expert Systems with Applications. 116516.
5.Ahmadianfar, I., Jamei, M., & Chu, X. (2020). A novel hybrid wavelet-locally weighted linear regression (W-LWLR) model for electrical conductivity (EC) prediction in surface water. Journal of Contaminant Hydrology. 232, 103641.
6.Ahmadianfar, I., Shirvani-Hosseini, S., He, J., Samadi-Koucheksaraee, A., & Yaseen, Z. M. (2022). An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Scientific Reports. 12 (1), 1-34.
7.Ahmadianfar, I., Shirvani-Hosseini, S., Samadi-Koucheksaraee, A., & Yaseen, Z. M. (2022). Surface water sodium (Na+) concentration prediction using hybrid weighted exponential regression model with gradient-based optimization. Environmental Science and Pollution Research. 1-26.
8.Ahmed, A. N., Othman, F. B., Afan, H. A., Ibrahim, R. K., Fai, C. M., Hossain, M. S., Ehteram, M., & Elshafie, A. (2019). Machine learning methods for better water quality prediction. Journal of Hydrology. 578, 124084.
9.Asadollah, S. B. H. S., Sharafati, A., Motta, D., & Yaseen, Z. M. (2021). River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. Journal of Environmental Chemical Engineering.
9 (1), 104599.
10.Barzegar, R., Adamowski, J., & Moghaddam, A. A. (2016). Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stochastic Environmental Research and Risk Assessment. 30 (7), 1797-1819.
11.Bozorg-Haddad, O., Soleimani, S., & Loáiciga, H. A. (2017). Modeling water-quality parameters using genetic algorithm–least squares support vector regression and genetic programming. Journal of Environmental Engineering. 143 (7), 4017021.
12.Bui, D. T., Khosravi, K., Tiefenbacher, J., Nguyen, H., & Kazakis, N. (2020). Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of the Total Environment. 721, 137612.
13.Chang, F. J., Tsai, Y. H., Chen, P. A., Coynel, A., & Vachaud, G. (2015). Modeling water quality in an urban river using hydrological factors–Data driven approaches. Journal of Environmental Management. 151, 87-96.
14.Chatterjee, S., Sarkar, S., Dey, N., Sen, S., Goto, T., & Debnath, N. C. (2017). Water quality prediction: Multi objective genetic algorithm coupled artificial neural network based approach. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). 963-968.
15.Chen, H., Ahmadianfar, I., Liang, G., & Heidari, A. A. (2024). Robust kernel extreme learning machines with weighted mean of vectors and variational mode decomposition for forecasting total dissolved solids. Engineering Applications of Artificial Intelligence. 133, 108587.
16.Deng, W., Wang, G., & Zhang, X. (2015). A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting. Chemometrics and Intelligent Laboratory Systems. 149, 39-49.
17.Fayaz, M., & Kim, D. (2018). A prediction methodology of energy consumption based on deep extreme learning machine and comparative analysis in residential buildings. Electronics. 7 (10), 222.
18.Gharemahmudli, S., & Seyed Hamidreza Sadeghi, V. S. S. (2024). Changeability of saline soil surface due to soil cyanobacteria inoculation using image processing. Water and Soil Conservation. 31 (2), 119-137.
19.Han, Y., Aziz, T. N., Del Giudice, D., Hall, N. S., & Obenour, D. R. (2021). Exploring nutrient and light limitation of algal production in a shallow turbid reservoir. Environmental Pollution. 269, 116210.
20.Huang, M., Tian, D., Liu, H., Zhang, C., Yi, X., Cai, J., Ruan, J., Zhang, T., Kong, S., & Ying, G. (2018). A hybrid fuzzy wavelet neural network model with self-adapted fuzzy-means clustering and genetic algorithm for water quality prediction in rivers. Complexity. 2018.
21.Jamei, M., Ahmadianfar, I., Karbasi, M., Jawad, A. H., Farooque, A. A., & Yaseen, Z. M. (2021). The assessment of emerging data-intelligence technologies for modeling Mg+2 and SO4−2 surface water quality. Journal of Environmental Management. 300, 113774.
22.Jamei, M., Ali, M., Karbasi, M., Karimi, B., Jahannemaei, N., Farooque, A. A., & Yaseen, Z. M. (2024). Monthly sodium adsorption ratio forecasting in rivers using a dual interpretable glass-box complementary intelligent system: Hybridization of ensemble TVF-EMD-VMD, Boruta-SHAP, and eXplainable GPR. Expert Systems with Applications. 237, 121512.
23.Kandasamy, L., Mahendran, A., Sangaraju, S. H. V., Mathur, P., Faldu, S. V., & Mazzara, M. (2025). Enhanced remote sensing and deep learning aided water quality detection in the Ganges River, India supporting monitoring of aquatic environments. Results in Engineering. 25, 103604.
24.Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems. 30.
25.Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society Series A: Statistics in Society. 135 (3), 370-384.
26.Qiu, R., Wang, Y., Wang, D., Qiu, W., Wu, J., & Tao, Y. (2020). Water temperature forecasting based on modified artificial neural network methods: Two cases of the Yangtze River. Science of The Total Environment. 737, 139729.
27.Salarijazi, M., Ahmadianfar, I., & Yaseen, Z. M. (2024). Prediction enhancement for surface water sodium adsorption ratio using limited inputs: Implementation of hybridized stacked ensemble model with feature selection algorithm. Physics and Chemistry of the Earth, Parts a/b/C. 134, 103561.
28.Satish, N., Anmala, J., Rajitha, K., & Varma, M. R. R. (2024). A stacking ANN ensemble model of ML models for stream water quality prediction of Godavari River Basin, India. Ecological Informatics. 80, 102500.
29.ur Rehman, N., & Aftab, H. (2019). Multivariate variational mode decomposition. IEEE Transactions on Signal Processing. 67 (23), 6039-6052.
30.Vovk, V. (2013). Kernel ridge regression. In Empirical inference: Festschrift in honor of vladimir n. vapnik (pp. 105-116). Springer.
31.Wai, K. P., Koo, C. H., Huang, Y. F., & Chong, W. C. (2024). Decomposed intrinsic mode functions and deep learning algorithms for water quality index forecasting. Neural Computing and Applications. 1-20.
32.Wu, C., Zhang, X., Wang, W., Lu, C., Zhang, Y., Qin, W., Tick, G. R., Liu, B., & Shu, L. (2021). Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model. Science of The Total Environment. 783, 146948.
33.Zahiri, J., Cheraghi, M., & Salarijazi, M. (2024). Simulating chlorophyll a in dam reservoirs using remote sensing and data-driven approaches. Water and Soil Conservation. 31 (3), 85-108.
34.Zhou, X., Leng, Y., Salarijazi, M., Ahmadianfar, I., & Farooque, A. A. (2024). Development of forecasting of monthly SAR time series in river systems: A multivariate data decomposition-based hybrid approach. Process Safety and Environmental Protection. 188, 1355-1375.